
.

Computational Morphology:
Morphological operations

Yulia Zinova

09 April 2014 – 16 July 2014

Yulia Zinova Computational Morphology: Morphological operations

.

Root-and-Pattern Morphology

▶ Best-known example of root-and-pattern morphology: derivational
morphology of the verbal system of Arabic;

▶ the first formal generative treatment – McCarthy (1979);

▶ Semitic languages derive verb stems - actual verbs with specific
meanings - from consonantal roots;

▶ the overall prosodic “shape” of the derivative is given by a
prosodic template (in McCarthys original analysis a CV template)

▶ the particular vowels chosen depend upon the intended aspect
(perfect or imperfect) and voice (active or passive).

Yulia Zinova Computational Morphology: Morphological operations

.

Examples

▶ Active forms with the root ktb “notion of writing”
Pattern Template Verb Stem Gloss

I C1aC2aC3 katab “wrote”
II C1aC2C2aC3 kattab “caused to write”
III C1aaC2aC3 kaatab “corresponded”
IV aC1C2aC3 aktab “caused to write”
VI taC1aaC2aC3 takaatab “wrote to each other”
VII nC1aC2aC3 nkatab “subscribed”
VII C1aC2aC3 katab “copied”
X staC1C2aC3 katab “caused to write”

Yulia Zinova Computational Morphology: Morphological operations

.

General Architecture

▶ We will assume that we are combining two elements, the root and
the vocalized stem;

▶ we define the root P as follows:
P = ktb

▶ we assume that the templates are represented more or less as in
the standard analyses;

▶ exception: the additional affixes that one finds in some of the
patterns the n- and sta- prefixes in VII and X or the -t infix in VIII
will be lexically specified as being inserted;

▶ This serves the dual purpose:
▶ making the linking transducer simpler to formulate;
▶ underscoring the fact that these devices look like additional

affixes to the core CV templates (and presumably historically
were).

Yulia Zinova Computational Morphology: Morphological operations

.

Transducers

τI = CaCaC
τII = CaCCaC
τIII = CaaCaC
τIV = [ϵ : a]CCaC
τVI = [ϵ : ta]CaaCaC
τVII = [ϵ : n]CaCaC
τVIII = C [ϵ : t]aCaC
τX = [ϵ : sta]CaCaC

τ =
∪

p∈patterns τp

Yulia Zinova Computational Morphology: Morphological operations

.

Last transducer

▶ Now we need a transducer to link the root to the templates;
▶ It must do two things:

▶ it must allow for optional vowels between the three consonants
of the root;

▶ it must allow for doubling of the center consonant to match
the doubled consonant slot in pattern II.

▶ The first part can be accomplished by the following transducer:
λ1 = C [ϵ : V]∗C [ϵ : V]∗C

▶ The second portion the consonant doubling requires rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) of the general
form:
λ2 = Ci → CiCi

▶ Then the full linking transducer λ can be constructed as:
λ = λ1 ◦ λ2

Yulia Zinova Computational Morphology: Morphological operations

.

Getting everything together

▶ The whole set of templates for ktb can then be constructed as
follows:
Γ = P ◦ λ ◦ τ

Yulia Zinova Computational Morphology: Morphological operations

.

Other approaches

▶ Most large-scale working systems for Arabic such as Buckwalter
(2002), sidestep the issue of constructing verb stems and
effectively compile out the various forms that verbs take.

▶ This is reasonable, given that the particular forms that are
associated with a verbal root are lexically specified for that root,
and the semantics of the derived forms are not entirely predictable.

▶ Another approach taken is that of Beesley and Karttunen (2000)
who propose new mechanisms for handling non-concatenative
morphology including an operation called compile-replace.

▶ The basic idea behind this operation is to represent a regular
expression as part of the finite-state network, and then to compile
this regular expression on demand.

Yulia Zinova Computational Morphology: Morphological operations

.

Compile-replace: example

▶ Consider a case of total reduplication such as that found in Malay:
a form like bagi “bag” becomes bagibagi “bags”.

▶ In Beesley and Karttunens implementation, a lexical-level form
bagi+Noun+Plural would map to an intermediate surface form
bagiˆ2.

▶ This itself is a regular expression indicating the duplication of the
string bagi, which when compiled out will yield the actual surface
form bagi-bagi.

▶ Thus for any input string w, the reduplication operation transforms
it into the intermediate surface form wˆ2, which compile-replace
then compiles out and replaces with the actual surface form.

Yulia Zinova Computational Morphology: Morphological operations

