Computational Morphology:
Morphological operations

Yulia Zinova

09 April 2014 — 16 July 2014

Yulia Zinova Computational Morphology: Morphological operations



Root-and-Pattern Morphology

> Best-known example of root-and-pattern morphology: derivational
morphology of the verbal system of Arabic;

» the first formal generative treatment — McCarthy (1979);

» Semitic languages derive verb stems - actual verbs with specific
meanings - from consonantal roots;

» the overall prosodic “shape” of the derivative is given by a
prosodic template (in McCarthys original analysis a CV template)

» the particular vowels chosen depend upon the intended aspect
(perfect or imperfect) and voice (active or passive).

Yulia Zinova Computational Morphology: Morphological operations



Examples

» Active forms with the root ktb “notion of writing”

Pattern | Template Verb Stem | Gloss

I C1aCraCs katab “wrote”

I C1aCyCraC3 | kattab “caused to write"”

11 CiaaCraCs kaatab “corresponded”

\Y] aC1CraCy aktab “caused to write"”

VI taCiaaCyaC3 | takaatab “wrote to each other”
VII nCiaCsraCs nkatab “subscribed”

VII CiaCraCs katab “copied”

X staC;CraC3 katab “caused to write"”

Yulia Zinova

Computational Morphology: Morphological operations



General Architecture

» We will assume that we are combining two elements, the root and
the vocalized stem;

» we define the root P as follows:
P = ktb

> we assume that the templates are represented more or less as in
the standard analyses;

> exception: the additional affixes that one finds in some of the
patterns the n- and sta- prefixes in VII and X or the -t infix in VIII
will be lexically specified as being inserted;

» This serves the dual purpose:

» making the linking transducer simpler to formulate;

» underscoring the fact that these devices look like additional
affixes to the core CV templates (and presumably historically
were).

Yulia Zinova Computational Morphology: Morphological operations



Transducers

71 = CaCaC

TI = CaCCaC

TI = CaaCaC

TIV = [E . a]CCaC
Tv) = [e : ta]CaaCaC
TVII = [6 . n] CaCaC
TVIII = C[€ : t]aCaC
Tx = [€ : sta]CaCaC

T = UpEpattems Tp

Yulia Zinova Computational Morphology: Morphological operations



Last transducer

v

Now we need a transducer to link the root to the templates;

> It must do two things:

» it must allow for optional vowels between the three consonants
of the root;

» it must allow for doubling of the center consonant to match
the doubled consonant slot in pattern II.

The first part can be accomplished by the following transducer:

A1 = Cle: V]*Cle: V]*C

The second portion the consonant doubling requires rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) of the general
form:

)\2 = C,' — C;C;

Then the full linking transducer A can be constructed as:

A= /\1 o} )\2

Yulia Zinova Computational Morphology: Morphological operations



Getting everything together

» The whole set of templates for ktb can then be constructed as
follows:
[=PolorT

Yulia Zinova Computational Morphology: Morphological operations



Other approaches

» Most large-scale working systems for Arabic such as Buckwalter
(2002), sidestep the issue of constructing verb stems and
effectively compile out the various forms that verbs take.

» This is reasonable, given that the particular forms that are
associated with a verbal root are lexically specified for that root,
and the semantics of the derived forms are not entirely predictable.

» Another approach taken is that of Beesley and Karttunen (2000)
who propose new mechanisms for handling non-concatenative
morphology including an operation called compile-replace.

» The basic idea behind this operation is to represent a regular
expression as part of the finite-state network, and then to compile
this regular expression on demand.

Yulia Zinova Computational Morphology: Morphological operations



Compile-replace: example

» Consider a case of total reduplication such as that found in Malay:
a form like bagi “bag’ becomes bagibagi “bags”.

> In Beesley and Karttunens implementation, a lexical-level form
bagi+Noun+Plural would map to an intermediate surface form
bagi”2.

» This itself is a regular expression indicating the duplication of the
string bagi, which when compiled out will yield the actual surface
form bagi-bagi.

» Thus for any input string w, the reduplication operation transforms
it into the intermediate surface form w”2, which compile-replace
then compiles out and replaces with the actual surface form.

Yulia Zinova Computational Morphology: Morphological operations



