Computational Morphology:
FSAs and FSTs: Weights and Probabilities

Yulia Zinova

09 April 2014 — 16 July 2014

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Weights and Probabilities: Inventory

v

Why? Disambiguation in morphological and syntactic processing.

v

We need: sums, products, logarithms and exponents.

v

Shorthand notation: X for sum, I for product.

v

Convention: we use natural logarithms (base e).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Properties of log and exp

» Reminder 1: basic relationship between log and exp
log(exp(x)) = log(e*) = x (1)

W=y (2)

» Remainder 2: the log of the product is a sum of logs. Useful,
because logs can be taken prior to combination when product gives
extremely small floats.

exp(log(y)) = €'

» Remainder 3: log preserves order (if x > y, then log(x) > log(y))

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Probabilistic models

» The probabilistic models we are going to use are discrete
distributions.

» This means there are k discrete outcomes (such as different words
from a vocabulary ¥ of size k) each with its own parameter.

» When k = 2, it is a binominal distribution; when kK > 2, it is a
multinominal distribution.

> If we assign a probability to each word w in a vocabulary %, it is as
multinominal distribution with |X| parameters where
ZWEZP(W) =1.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Relative frequency estimation

» Suppose we have

» a corpus of N words
» words are taken from vocabulary
» f(w) is the frequency of the word (its count)

» Relative frequency estimation is

» Question: Problem with low-frequency words?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Relative frequency estimation

» Suppose we have
» a corpus of N words
» words are taken from vocabulary
» f(w) is the frequency of the word (its count)

v

Relative frequency estimation is

P(w) = N (3)

v

Question: Problem with low-frequency words?

v

Answer: Zero probability is given to all the words that have not
occured in our corpus.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Most probable...

> P is the maximum probability of a word in the corpus
p = max P(w) (4)
w

» W is the word that has the highest probability

p= arg max P(w) (5)
P(w) = b (6)

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Weights and costs

» FSAs and FSTs can be extended to include weights or costs on the
arcs — weighted finite-state automata (WFSA) and weighted
finite-state transducers.

» Weights usually represent probabilities, or negative log
probabilities, or different analyses.

» The sum of probabilities on all the arcs leaving the given state
must sum to 1.

» The probability of a particular path is given by multiplying the
individual arc probabilities.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Example

eyl0.4 dx/0.8

(] (2) Oae
)

» Question What is the probability of the pronunciation /deytax/?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Example

eyi0.4 dx/0.8

(] (2) Oae
)

» Question What is the probability of the pronunciation /deytax/?
» Answer 1 ¥ 0.4 * 0.2 *1 =0.08

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Example

eyi0.4 d._IElS
@ drLo /"(/{
1

ac"III 6

» Question What is the probability of the pronunciation /deytax/?
» Answer 1 ¥ 0.4 * 0.2 *1 =0.08

> In a toy example probabilities are fine, but if the system is real, this
will lead to difficulties in float point representation of the values.

» Because of this, negative log probabilities are used: they must be
summed, not multiplied, and smaller numbers correspond to more
probable events.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Weights along different paths

> In addition to specifying how weights are combined along a path,
one must also specify how weights are combined between the
paths.

» When probabilities are used, the probabilities of two paths are
summed.

» Combining weights along one paths will be called times operation,
between two paths — plus operation

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Some mathematics: monoid

Definition A monoid is a pair (M,e), where M is a set and e is a
binary operation on M, obeying the following rules:
1. closure: for all a,bin M, aebisin M
2. identity: there exists an element e in M, such that for all a in
M, aee =eea=a. This is termed the neutral element.

3. associativity: e is an associative operation; that is, for all
a,b,cin M, (aeb)ec=ae(bec)

» A monoid (M, e) is commutative if ae b= beaforall a,bin M.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Some mathematics: semiring

Definition A semiting is a triple (K, €,), where K is a set and
P and) are binary operations on K, obeying the following rules:
1. (K, @) is a commutative monoid with neutral element
denoted by 0;

2. (K,Q) is a monoid with neutral element denoted by 1;

3. The product () distributes with respect to the sum (D),
e, a@(bDc) = (1@ b) B(a ¢);

4. ForallainK, aQ0=0Qa=0.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Semirings

» Common semirings used in speech and language processing:
1. (4, x), or “real" semiring;
2. (min,+), or “tropical”semiring.
» The (4, X) semiring is appropriate for use with probabilities:
» to get the probability of a path, one multiplies along the path;

> to get the probability of a set of paths, one sums the
probabilities of those paths.

» The (min,+) semiring is appropriate for use with negative log
probabilities:
» one sums the weights along the path,
» one computes the minimum of a set of paths (useful if looking
for the best scoring path, since lower scores are better with
negative logs).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Weighted finite-state automaton

Definition A weighted finite-state automaton is an octuple

A=(Q,s,F,X,0,\ 0,p), where

(Q,s, F,X,0) is a finite-state automaton;

» an initial output function X : s — K assigns a weight to
entering the automaton;

» an output function o : § — K assigns a weight to transitions in
the automaton;

» a final output function p : F — K assigns a weight to leaving
the automaton.

v

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Label, origin, destination

» For any transition d € ¢, let i[d] € (X Ue) be its label; p[d] € Q
its origin state; and n[d] € Q its destination state. A path
m = di...d, consists of k transitions dy,...,dx € §, where
n[d;] = pldj;1] for all j, i.e., the destination state of transition d; is
the origin state of transition d; + 1.

» Extending the definitions of label, origin and destination to paths:
let i[w] = i[d1]...i[dk]; p[r] = p[di]; and n[x] = n[dk]. A cycle is
a path 7 such that p[r] = n[n], i.e., a path that starts and ends at
the same state.

> An acyclic automaton or transducer has no cycles.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Automata Intersection

Given two automata M = (Q.s, F, E,8)and M' = (Q',s", F', X', &),
construct a new automaton M” such that:

« Its set of states Q" = Q x Q' is the cross-product of the states of
the individual machines.

. 5" — {51 sf}

« F"=F % F'

s E'=FNE

8" ((p, p),x) =1(q,q") just in case &(p,x)=¢ is in M and
3(p',x)=q"isin M.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Composition of transducers

» The basic algorithm for transducer composition is essentially the
same;

> the output label of one transducer is matched with the input label
of the other;
» The resulting arc has

» as its input label the input label of the arc from the first
machine

» as its output label the output label of the arc from the second
machine.

» Automata can be seen as a special case of transducers, where the
input and output symbols are always identical.

» For weighted intersection or composition, the weights of the
resulting path as is the extend () of the weights of the two input
paths.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

Deterministic automata

> Non-deterministic finite-state automata accept the same class of
languages as DFSA: regular languages.

» For every NFSA there is an DFSA that accepts the same language.
» DFSA has usually more states than NFSA for the same language.
» Efficiency: DFSA is more efficient — used for computation.

» After making an automaton deterministic, it is important to
minimize it (if possible).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

From NFSA to DFSA: powerset construction

» Powerset construction applied to NFSA that does not allow state
transformations without consuming input symbols (e-transitions).

» Our NFSA: a quintuple (Q,s, F,%,6). Question: What is what in
this quintuple?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

From NFSA to DFSA: powerset construction

» Powerset construction applied to NFSA that does not allow state
transformations without consuming input symbols (e-transitions).

» Our NFSA: a quintuple (Q,s, F,%,6). Question: What is what in
this quintuple?

» Answer: Q is the set of states, s is the initial state, F — the set of
accepting states, X — the alphabet, § — the transition function.

» The corresponding DFSA has states corresponding to subsets of Q.

» The initial state of the DFSA is s, the (one-element) set of initial
states.

» The transition function of the DFSA maps a state S (representing
a subset of Q) and an input symbol x to the set
3(S,x) = Ud(q,x)|qS, (the set of all states that can be reached by
an x-transition from a state in S).

» A state S of the DFSA is an accepting state if and only if at least
one member of S is an accepting state of the NFSA.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

From NFSA to DFSA: powerset construction with €

» For an NFA with e-transitions:
> the initial state consists of all NFSA states reachable by
e-transitions from s
» the value (S, x) of the transition function is the set of all
states reachable by e-transitions from Ud(q, x)|ginS.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

From NFSA to DFSA: example

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

From NFSA to DFSA: exercise

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

From NFSA to DFSA: answer

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

From NFSA to DFSA: exercise with e

» Which regular language recognizes this automaton?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

From NFSA to DFSA: answer

SH-HCD

» Language: (a|b)cx
» How to minimize the DFSA?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Transducers for composition

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

Result of a naive composition

oo axd __(T:\L £ __(';9
: vy S
b:e e
2,1 = 2,2
N "
cE e
Y

. ee i3 d:a }
\> 22

» This is correct, but inefficient.

» With weights, such naive algorithm leads to incorrect weights
being assigned.

» Solution: inserting some epsilon-filter as a middle layer in
composition. The algorithm is complicated, so we do not review it.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:

NFSA — DFSA: weights

>

Weighted automata and transducers (whether weighted or not)
cannot in general be determinized, but certain types of machines,
including acyclic machines can be.

Since machine minimization requires a determinized machine, this
also implies that not all weighted acceptors or transducers can be
minimized (some classes can be).

Transducers and weighted acceptors that fall into the class of
determinizable and minimizable machines include machines that
are useful in speech and language processing.

For example, a dictionary can be modeled as an acyclic transducer,
mapping input words to some other property such as their part of
speech or pronunciation; and a lattice of possible analyses output
by a speech recognizer can be modeled as an acyclic weighted
acceptor.

Determinizing and minimizing such machines can provide large
efficiency gains.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Prob:z

