
.

Computational Morphology:
FSAs and FSTs: Weights and Probabilities

Yulia Zinova

09 April 2014 – 16 July 2014

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Weights and Probabilities: Inventory

▶ Why? Disambiguation in morphological and syntactic processing.

▶ We need: sums, products, logarithms and exponents.

▶ Shorthand notation: Σ for sum, Π for product.

▶ Convention: we use natural logarithms (base e).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Properties of log and exp

▶ Reminder 1: basic relationship between log and exp

log(exp(x)) = log(ex) = x (1)

exp(log(y)) = e log(y) = y (2)

▶ Remainder 2: the log of the product is a sum of logs. Useful,
because logs can be taken prior to combination when product gives
extremely small floats.

▶ Remainder 3: log preserves order (if x > y , then log(x) > log(y))

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Probabilistic models

▶ The probabilistic models we are going to use are discrete
distributions.

▶ This means there are k discrete outcomes (such as different words
from a vocabulary Σ of size k) each with its own parameter.

▶ When k = 2 , it is a binominal distribution; when k > 2, it is a
multinominal distribution.

▶ If we assign a probability to each word w in a vocabulary Σ, it is as
multinominal distribution with |Σ| parameters where
Σw∈ΣP(w) = 1.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Relative frequency estimation

▶ Suppose we have
▶ a corpus of N words
▶ words are taken from vocabulary Σ
▶ f (w) is the frequency of the word (its count)

▶ Relative frequency estimation is

P(w) =
f (w)

N
(3)

▶ Question: Problem with low-frequency words?

▶ Answer: Zero probability is given to all the words that have not
occured in our corpus.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Relative frequency estimation

▶ Suppose we have
▶ a corpus of N words
▶ words are taken from vocabulary Σ
▶ f (w) is the frequency of the word (its count)

▶ Relative frequency estimation is

P(w) =
f (w)

N
(3)

▶ Question: Problem with low-frequency words?

▶ Answer: Zero probability is given to all the words that have not
occured in our corpus.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Most probable...

▶ p̂ is the maximum probability of a word in the corpus

p̂ = max
w

P(w) (4)

▶ ŵ is the word that has the highest probability

p̂ = argmax
w

P(w) (5)

P(ŵ) = p̂ (6)

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Weights and costs

▶ FSAs and FSTs can be extended to include weights or costs on the
arcs → weighted finite-state automata (WFSA) and weighted
finite-state transducers.

▶ Weights usually represent probabilities, or negative log
probabilities, or different analyses.

▶ The sum of probabilities on all the arcs leaving the given state
must sum to 1.

▶ The probability of a particular path is given by multiplying the
individual arc probabilities.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Example

▶ Question What is the probability of the pronunciation /deytax/?

▶ Answer 1 * 0.4 * 0.2 * 1 = 0.08

▶ In a toy example probabilities are fine, but if the system is real, this
will lead to difficulties in float point representation of the values.

▶ Because of this, negative log probabilities are used: they must be
summed, not multiplied, and smaller numbers correspond to more
probable events.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Example

▶ Question What is the probability of the pronunciation /deytax/?

▶ Answer 1 * 0.4 * 0.2 * 1 = 0.08

▶ In a toy example probabilities are fine, but if the system is real, this
will lead to difficulties in float point representation of the values.

▶ Because of this, negative log probabilities are used: they must be
summed, not multiplied, and smaller numbers correspond to more
probable events.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Example

▶ Question What is the probability of the pronunciation /deytax/?

▶ Answer 1 * 0.4 * 0.2 * 1 = 0.08

▶ In a toy example probabilities are fine, but if the system is real, this
will lead to difficulties in float point representation of the values.

▶ Because of this, negative log probabilities are used: they must be
summed, not multiplied, and smaller numbers correspond to more
probable events.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Weights along different paths

▶ In addition to specifying how weights are combined along a path,
one must also specify how weights are combined between the
paths.

▶ When probabilities are used, the probabilities of two paths are
summed.

▶ Combining weights along one paths will be called times operation,
between two paths – plus operation

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Some mathematics: monoid

Definition A monoid is a pair (M, •), where M is a set and • is a
binary operation on M, obeying the following rules:

1. closure: for all a, b in M, a • b is in M
2. identity: there exists an element e in M, such that for all a in

M, a • e = e • a = a. This is termed the neutral element.
3. associativity: • is an associative operation; that is, for all

a, b, c in M, (a • b) • c = a • (b • c)

▶ A monoid (M, •) is commutative if a • b = b • a for all a, b in M.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Some mathematics: semiring

Definition A semiting is a triple (K,
⊕

,
⊗

), where K is a set and⊕
and

⊗
are binary operations on K, obeying the following rules:

1. (K,
⊕

) is a commutative monoid with neutral element
denoted by 0;

2. (K,
⊗

) is a monoid with neutral element denoted by 1;
3. The product (

⊗
) distributes with respect to the sum (

⊕
),

i.e., a
⊗

(b
⊕

c) = (a
⊗

b)
⊕

(a
⊗

c);
4. For all a in K, a

⊗
0 = 0

⊗
a = 0.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Semirings

▶ Common semirings used in speech and language processing:

1. (+,×), or “real” semiring;
2. (min,+), or “tropical”semiring.

▶ The (+,×) semiring is appropriate for use with probabilities:
▶ to get the probability of a path, one multiplies along the path;
▶ to get the probability of a set of paths, one sums the

probabilities of those paths.

▶ The (min,+) semiring is appropriate for use with negative log
probabilities:

▶ one sums the weights along the path,
▶ one computes the minimum of a set of paths (useful if looking

for the best scoring path, since lower scores are better with
negative logs).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Weighted finite-state automaton

Definition A weighted finite-state automaton is an octuple
A = (Q, s,F ,Σ, δ, λ, σ, ρ), where

▶ (Q, s,F ,Σ, δ) is a finite-state automaton;
▶ an initial output function λ : s → K assigns a weight to

entering the automaton;
▶ an output function σ : δ → K assigns a weight to transitions in

the automaton;
▶ a final output function ρ : F → K assigns a weight to leaving

the automaton.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Label, origin, destination

▶ For any transition d ∈ δ, let i [d] ∈ (Σ ∪ ϵ) be its label; p[d] ∈ Q
its origin state; and n[d] ∈ Q its destination state. A path
π = d1 . . . dk consists of k transitions d1, . . . , dk ∈ δ, where
n[dj] = p[dj+1] for all j , i.e., the destination state of transition dj is
the origin state of transition dj + 1.

▶ Extending the definitions of label, origin and destination to paths:
let i [π] = i [d1] . . . i [dk]; p[π] = p[d1]; and n[π] = n[dk]. A cycle is
a path π such that p[π] = n[π], i.e., a path that starts and ends at
the same state.

▶ An acyclic automaton or transducer has no cycles.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Automata Intersection

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Composition of transducers

▶ The basic algorithm for transducer composition is essentially the
same;

▶ the output label of one transducer is matched with the input label
of the other;

▶ The resulting arc has
▶ as its input label the input label of the arc from the first

machine
▶ as its output label the output label of the arc from the second

machine.

▶ Automata can be seen as a special case of transducers, where the
input and output symbols are always identical.

▶ For weighted intersection or composition, the weights of the
resulting path as is the extend (

⊗
) of the weights of the two input

paths.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Deterministic automata

▶ Non-deterministic finite-state automata accept the same class of
languages as DFSA: regular languages.

▶ For every NFSA there is an DFSA that accepts the same language.

▶ DFSA has usually more states than NFSA for the same language.

▶ Efficiency: DFSA is more efficient → used for computation.

▶ After making an automaton deterministic, it is important to
minimize it (if possible).

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: powerset construction

▶ Powerset construction applied to NFSA that does not allow state
transformations without consuming input symbols (ϵ-transitions).

▶ Our NFSA: a quintuple (Q, s,F ,Σ, δ). Question: What is what in
this quintuple?

▶ Answer: Q is the set of states, s is the initial state, F – the set of
accepting states, Σ – the alphabet, δ – the transition function.

▶ The corresponding DFSA has states corresponding to subsets of Q.

▶ The initial state of the DFSA is s, the (one-element) set of initial
states.

▶ The transition function of the DFSA maps a state S (representing
a subset of Q) and an input symbol x to the set
δ(S , x) = ∪δ(q, x)|qS , (the set of all states that can be reached by
an x-transition from a state in S).

▶ A state S of the DFSA is an accepting state if and only if at least
one member of S is an accepting state of the NFSA.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: powerset construction

▶ Powerset construction applied to NFSA that does not allow state
transformations without consuming input symbols (ϵ-transitions).

▶ Our NFSA: a quintuple (Q, s,F ,Σ, δ). Question: What is what in
this quintuple?

▶ Answer: Q is the set of states, s is the initial state, F – the set of
accepting states, Σ – the alphabet, δ – the transition function.

▶ The corresponding DFSA has states corresponding to subsets of Q.

▶ The initial state of the DFSA is s, the (one-element) set of initial
states.

▶ The transition function of the DFSA maps a state S (representing
a subset of Q) and an input symbol x to the set
δ(S , x) = ∪δ(q, x)|qS , (the set of all states that can be reached by
an x-transition from a state in S).

▶ A state S of the DFSA is an accepting state if and only if at least
one member of S is an accepting state of the NFSA.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: powerset construction with ϵ

▶ For an NFA with ϵ-transitions:
▶ the initial state consists of all NFSA states reachable by

ϵ-transitions from s
▶ the value δ(S , x) of the transition function is the set of all

states reachable by ϵ-transitions from ∪δ(q, x)|qinS .

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: example

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: exercise

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: answer

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: exercise with ϵ

▶ Which regular language recognizes this automaton?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

From NFSA to DFSA: answer

▶ Language: (a|b)c∗
▶ How to minimize the DFSA?

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Transducers for composition

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

Result of a naive composition

▶ This is correct, but inefficient.

▶ With weights, such naive algorithm leads to incorrect weights
being assigned.

▶ Solution: inserting some epsilon-filter as a middle layer in
composition. The algorithm is complicated, so we do not review it.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

.

NFSA → DFSA: weights

▶ Weighted automata and transducers (whether weighted or not)
cannot in general be determinized, but certain types of machines,
including acyclic machines can be.

▶ Since machine minimization requires a determinized machine, this
also implies that not all weighted acceptors or transducers can be
minimized (some classes can be).

▶ Transducers and weighted acceptors that fall into the class of
determinizable and minimizable machines include machines that
are useful in speech and language processing.

▶ For example, a dictionary can be modeled as an acyclic transducer,
mapping input words to some other property such as their part of
speech or pronunciation; and a lattice of possible analyses output
by a speech recognizer can be modeled as an acyclic weighted
acceptor.

▶ Determinizing and minimizing such machines can provide large
efficiency gains.

Yulia Zinova Computational Morphology: FSAs and FSTs: Weights and Probabilities

