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Sets, relations, functions

Sets and Set Notation

I A set is a collection of definite, distinct objects
I Examples of sets?

I Set of words in a particular book
I Set of colors of the German flag
I Set of letters in the Greek alphabet
I Set of even natural numbers greater than 5

We follow Van Eijck and Unger 2010, electronic access from the library
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Sets, relations, functions

Sets and Set Notation

I Elements of a set a called its members
I a is an element of set A: a ∈ A

I a is not an element of set A: a /∈ A

I Elements of the set can be very different:

I words, colors, letters, numbers, other sets
I Example: set A containing two sets – set B of even numbers and set C

of odd numbers
I Set A has 2 members, sets B and C have an infinite number of members
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Sets, relations, functions

Sets and Set Notation

I Two sets are the same if they have the same members
I All sets are fully determined by their members – principle of extensionality
I Several ways to specify a set:

1. Give a list of its members:

set having as its members numbers 1, 2 and 3.
2. Provide a semantic description: set of colors of the German flag
3. Separate a set out of a larger set (set comprehension): even natural

numbers are natural numbers such that the division by 2 leaves no reminder
E = {2n | n ∈ N}
http:
//directpoll.com/r?XDbzPBd3ixYqg8p5Yh47q1CL4dJyUfDjWycpEuEv
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Sets, relations, functions

Sets and Set Notation

I Some important sets have special names: N is a set of natural numbers,
Z is the set of integer numbers, ∅ is the empty set.

I Exercise 1.1 Explain why ∅ ⊆ A holds for every A.
I Exercise 1.2 Explain the difference between {∅} and ∅
I The complement of a set A with respect to some fixed universe U (called

domain) with A ⊆ U, is a set consisting of all objects in U that are not
elements of A.
Ā = {x | x ∈ U, x /∈ A}

I Exercise 1.3 Check that ¯̄A = A
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Sets, relations, functions

Relations

I Sets are collections of objects, but we also need relations.
I Relation between two sets A and B is a collection of ordered pairs (a, b)

such that a ∈ A and b ∈ B

I Set of all ordered pairs such that the first element is taken from the set
A and the second is taken from the set B is called Cartesian product and
written as A× B

I If A = {a, b, . . . , h}, B = {1, 2, . . . , 8},
C = {King ,Queen,Knight,Bishop,Pawn,Rook}, D = {White,Black},
how can we obtain
1. set of all possible positions,
2. set of all figures,
3. set of piece positions on the board,
4. set of all the moves (not necessarily legal) on a board?
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Sets, relations, functions

Relations

I Sets of ordered pairs are called binary relations.
I Sets of triples are ternary relations.
I Example of a ternary relation?

Borrowing something from someone (who
borrowed, owner, thing)

I n-ary relation is a set of n-tuples (ordered sequences of n objects)
I Unary relations are called properties.
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Sets, relations, functions

Composition

I If R and S are binary relations on a set U, i.e. RsubseteqU2 and
SsubseteqU2, then the composition of R and S (R ◦ S) is a set of pairs
(x , y) such that there is some z with (x , z) ∈ R and (z , y) ∈ S

I http://directpoll.com/r?
XDbzPBd3ixYqg8xopZWtE9oUDSLndsGvLua0BpIrP
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Sets, relations, functions

Converse

I R∨ = {(y , x)|(x , y) ∈ R}
I if a binary relation has the property that R∨ ⊆ R , R is called symmetric
I Exercise 1.4 Show that it follows from R∨ ⊆ R that R∨ = R
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Sets, relations, functions

Identity relation, reflexive relations, transitive relations

I If U is a set, the relation I = {(x , x)|x ∈ U} is called the identity
relation.

I If a relation R on U has the property that I ⊆ R , R is called reflexive
I A relation R is called transitive if it holds for all x, y, z that if (x , y) ∈ R

and (y , z) ∈ R , then also (x , z) ∈ R

I If one says that the relation of friendship is transitive, what does it mean?

I http://directpoll.com/r?
XDbzPBd3ixYqg8sGl2JvOqFN6XQsixL0Qzf5GuNwU
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Sets, relations, functions

Functions

I Functions are relations such that for any (a, b) and (a, c) in the relation
it has to hold that b and c are equal.

I A function from a set A (domain) to a set B (range) is a relation
between A and B such that for each a ∈ A there is one and only one
associated b ∈ B .

I Functions allow us to express dependence.
I Examples?
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Sets, relations, functions

Functions

I Functions can be given by tables (possibly infinite) – extensional view.
I Functions can be given as instructions for computation – intensional view
I Functions can be composed. If g is a function that converts from Kelvin

to Celcius and f is a function that converts from Celcius to Fahrenheit,
them f ġ is the function that converts from Kelvin to Fahrenheit.

I Exercise 1.5 The successor function s : N→ N on natural numbers is
given by n 7→ n + 1. What is the composition of s with itself?
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Sets, relations, functions

Characteristic function

I The characteristic function of a subset A of some domain U is a function
that maps all members of A to the truth-value True and all elements of
U that are not members of A to False.

I As we described relations as sets, we can represent every relation as a
characteristic function.

I Exercise 1.6 ≤ is a binary relation on the natural numbers. What is the
corresponding characteristic function?
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Lambda calculus

Lambda calculus

I λ-calculus was developed by the mathematician Alonzo Church in the
1930s as a proposal for a precise definition of the notion of mechanical
computation.

I Around the same time Alan Turing developed a different notion of
computable functions in terms of a Turing machine.

I Those notions turned out to be equivalent (defining the same class of
functions, also called the recursive functions)

I In 1960s the seminal work of Richard Montague showed the way towards
beautiful applications of lambda calculus in linguistics.
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Lambda calculus

Lambda calculus

I Consider the notation x 7→ x2 + y

I This can be thought of as the function mapping x to x2 + y for some
fixed y.

I To make a clead distinction between the bound variable x and the
unbound variable y we write
λx 7→ x2 + y or λx .x2 + y

I The lambda operator indicates that this is the function that depends on
one parameter x.

I If we want to bound y too, we need to write λxλy 7→ x2 + y
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Lambda calculus

Function application

I Let us apply the function λxλy 7→ x2 + y to an argument 3. It is written
as
(λxλy 7→ x2 + y)3
and provides the following result
λy 7→ 32 + y
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Lambda calculus

Language of lambda calculus

I Let us define all the possible expressions E:
E ::= v |(EE )|(λv 7→ E )

I This is a context-free grammar in Backus-Naur Form (BNF)
I Construct at least 3 different expressions using various combinations of

rules. Save them for later.
I Keeping in mind this definition, answer the following question:

http://directpoll.com/r?XDbzPBd3ixYqg81BahqggV1Iojc4u9XCcBrHS6Z8g
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Lambda calculus

Functions as arguments

I Functions can take functions as arguments
I Imagine we have a function λf 7→ (f dragon)

I Now we need to feed it the pluralization function as an argument.

I (λf 7→ (f dragon))(λx 7→ x ++ s)

I After function application (λx 7→ x ++ s)dragon
I After another application dragons
I Exercise 1.7 Reduce the following expression

(λf λx 7→ f (fx))(λy 7→ 1 + y)

I Exercise 1.8 Reduce the following expression (λx 7→ xx)(λx 7→ xx)
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Lambda calculus

Types in Grammar and Computation

I To allow only sensible expressions and applications, we need to introduce
types.
τ ::= b|(τ → τ)

I Now, each lambda expression is assigned a type. This is written as E : τ
(E is an expression of type τ)
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Lambda calculus

How to obtain the type of

I Variables: for each type τ we have variable for that type, e.g. x : τ ,
x ′ : τ , etc.

I Abstraction: if x : δ and E : τ , then (λx 7→ E ) : δ → τ .
I Application: if E1 : δ → τ and E2 : δ, then (E1E2) : τ .
I Exercise 1.9 Find types for the expressions you created
I Exercise 1.10 Find a type for (λx 7→ xx)(λx 7→ xx)
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Lambda calculus

Types in Haskell

I Int – the type of integers
I Bool – the type of truth-values
I Char – the type of characters
I type variables a, b, ... which stand for arbitrary types
I list types [a]
I function types a → b
I user-defined types
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Lambda calculus

Types

I Types in the lambda calculus have a lot in common with syntactic
categories in grammars.

I Basic types can be thought of as corresponding to terminal categories in
grammars (complete expressions)

I Function types characterize incomplete expressions like verb phrases.
I Such approach is called categorical grammar.
I Exercise 1.11 Assume that adjectives are of type N → N, as they take a

noun and return an expression of the same category. What is a type of
an adverbial very?
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Lambda calculus

Functional Programming

I Programms are similar to functions. Side effects – change of state of the
system.

I We can consider two results of performing something: the evaluation of
an expression and a change of state this evaluation brings about.

I Imperative programming focuses on the state and how to modify it.
I Declarative programming focuses on the evaluation itself.
I For functional programming, computation corresponds to the evaluation

of functions.
I Basic Haskell syntax: E ::= x |E E |λx → E |let x = E in E
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Lambda calculus

I ((λx .(xy))(λz .z))

I ((λx .((λy .(xy))x))(λz .w))

I ((((λf .(λg .(λx .((fx)(gx)))))(λm.(λn.(nm))))(λn.z))p)

Yulia Zinova Computational Semantics with Haskell Winter 2016/2017 24 / 24



Lambda calculus
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