What is XFST?

Creating a network

Loading and using a stored network
Running XFST with a script
Overview of Commands

Computational Morphology:
Xerox finite state tool

Yulia Zinova

15 February 2016 — 19 February 2016

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview

What is XFST?

Creating a network

Loading and using a stored network
Running XFST with a script

Overview of Commands

Yulia Zinova Computational Morphology: Xerox finite state tool

What is XFST?

XFST and foma

» XFST (Xerox finite state tool) is a commercial tool, the main book
(includes a CD with software) is Karttunen (2003)

» foma is the open-source analog (Hulden, 2009)

Yulia Zinova Computational Morphology: Xerox finite state tool

What is XFST?

Languages

» FST converts surface string language into analysis string language
(both directions).

» The surface language is given.
» The analysis language has to be designed by the linguist.

» Xerox convention: each analysis string consists of the traditional
dictionary base form followed by tags
cantar+Verb+PlInd+2P+PI
alto+Adj+Fem+Sg

Yulia Zinova Computational Morphology: Xerox finite state tool

What is XFST?

Challenges

» Morphotactics:
Words are composed of smaller elements that must be combined in
a certain order:
piti-less-ness is English
piti-ness-less is not English
» Phonological alternations
The shape of an element may vary depending on the context
pity is realized as piti in pitilessness
die becomes dy in dying

Yulia Zinova Computational Morphology: Xerox finite state tool

What is XFST?

Regular relations

» The relation between the surface forms of a language and the
corresponding lexical forms can be described as a regular relation.

> A regular relation consists of ordered pairs of strings.
leaf+N+-Pl : leaves
hang+V+Past : hung

» Any finite collection of such pairs is a regular relation.

> Regular relations are closed under operations such as
concatenation, iteration, union, and composition.

» Complex regular relations can be derived from simple relations.

Yulia Zinova Computational Morphology: Xerox finite state tool

Let's start

v

v

v

v

What is XFST?

Go to http://www.fsmbook.com, accept the agreement,
download software.

Run xfst .

The xfst[0]: prompt indicates that the xfst application is waiting
for a command. The number 0 indicates that the network stack is

empty.

2 types of XFST commands:

1.

adding networks to the stack, replacing some or all of the
stack by the result of some operation, and saving the stack
into a file;

. working with the network that was most recently added to the

stack.

Yulia Zinova Computational Morphology: Xerox finite state tool

http://www.fsmbook.com

Creating a network

Making and saving a network (1)

» To load a network you should:

> load a previously compiled network from a binary file or
» compiling a new network from some text source.

» In either case, the network becomes the topmost one on the stack.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (2)

> In this example, we compile a network from a regular expression

using the command ‘read regex.” We type
xfst[0] : read regex [%0 |12 |3[4|5|6]7]|8]|9]
> What does this regular expression denote?

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (2)

> In this example, we compile a network from a regular expression
using the command ‘read regex.” We type
xfst[0] : read regex [%0 |12 |3[4|5|6]7]|8]|9]

> What does this regular expression denote?

» This expression denotes the language that consists of the ten
decimal digits.

» Because 0 is a special symbol (epsilon) in a regular expression, it is
necessary to prefix it here with %, the escape character, to have it
interpreted as a digit.

» The semicolon at the end of the line closes the regular expression.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (3)

» When the command is terminated with a carriage return, XFST
responds...

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (3)

» When the command is terminated with a carriage return, XFST
responds...
2 states, 10 arcs, 10 words.
xfst[1]:
showing that the network representing this ten-word language
consists of 2 states and 10 arcs.

» The new prompt, xfst[1]: shows that we now have one network on
the stack.

» The command 'print net’ displays the structure of the network on
the screen.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (4)

>

The ‘print net’ command displays the states of the network: sO (a
non-final state), fs1 (a final state)

and the labeled arcs leading from sO to fs1.

In addition, we see the symbol alphabet of the network (Sigma),
the regular expression it was compiled from, and some
characteristics of the network (Flags, Arity).

It is often convenient to give a network a name that can be used in
a regular expression to refer to it.

The command for that assignment is ‘define’:

xfst[1]: define Digit

xfst[0]:

The ‘define’ command requires at least one argument: the symbol
that is being defined, here ‘Digit’.

If no further specification is given, the network.on the top of-the

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (5)

» The 'define’ command can take the second argument: a regular
expression that denotes the desired language or relation.

> Try
xfst[0]: define Digit [%0|1|2|3]4|5[6|7]8]9];
» What is the state of the stack after the comand?

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (5)

» The 'define’ command can take the second argument: a regular
expression that denotes the desired language or relation.

> Try

xfst[0]: define Digit [%0|1|2|3|4|5]6|7]8]9];
» What is the state of the stack after the comand?
» The stack remains empty.

» Note the closing semicolon that marks the end of the regular
expression.

» Once defined, the name ‘Digit’ can be used in regular expressions
to represent the language in question.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (6)

» Let us construct a transducer that converts US numerals to the
European format.

» In US numerals the comma is used as a separator, the period
marks the beginning of the decimal part.

» In Europe the convention is the opposite.
» Thus "1,000.00" in the US corresponds to "1.000,00” in Europe.

» How should such transducer be defined?

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (7)

» A transducer that does this conversion can be defined as follows,
using the defined 'Digit’ symbol:
xfst[0]: read regex %. -> %, , %, -> %. || Digit _ Digit ;

» How many arcs does the automaton have?

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Making and saving a network (7)

v

A transducer that does this conversion can be defined as follows,
using the defined 'Digit’ symbol:

xfst[0]: read regex %. -> %, , %, -> %. || Digit _ Digit ;

How many arcs does the automaton have?

41

This transducer represents the parallel replacement of“." by “,

and “" by

" between two digits.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Testing the network

» To verify that the transducer does what it is supposed to do we
can use the ‘apply’ command.

» Because transducers are bidirectional, we must specify the
direction of application.

» In this case, it is ‘down’; that is, the US representation is on
the “upper” side of the transducer:
apply down 1,234.99

» The ‘apply’ command may also be used to take the input strings
from a file instead of typing them directly.

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Testing the network

v

Create a file US-num.txt with several lines with numbers
(terminate the last line!)

> Try

apply down < US-num.txt

v

How is the file processed?

What will happen if you add .5 to the list of numbers? And
10,00,007 5,0,07

v

Yulia Zinova Computational Morphology: Xerox finite state tool

Creating a network

Saving the network

» In order to have the transducer available in the future, we can save
it to a file.

» The command ‘save’ writes all the networks currently on the stack
into a single file.

> In this case, the file will contain just one network:
save stack US-to-EU-num.fst

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Plan

» Load the network we just created from a file to the stack.
» Add another network on the top of the first one.

» Perform an operation to replace both of them with the result of
that operation.

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Loading and using a stored network (1)

» Clear the stack:
clear stack

» Load the network back from the file:
load US-to-EU-num.fst

» Create another network by compiling a simple network from the
same little text file we already used above: read text <
US-num.txt

» The ‘read text’ command expects as its argument a name of a file
containing a list of words, one entry per line. It compiles the word
list into a network.

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Loading and using a stored network (2)

» The command 'print words' displays the content of the compiled
word list:
print words

» How many networks are there in the stack at the moment?
» Try the print stack command.

> Note: unary commands such as print net and print words apply
to the top network on the stack.

» Try the print net command. How do you interpret the result?
Draw it!

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Composing a network

v

The compose net operation replaces the two networks on the
stack by the result of the operation. Do it!

» Thus we now have just one network left.

v

View its contents using the same print words command as before.

v

How do you interpret what you see?

v

Draw the resulting transducer.

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Resulting transducer

» The result of the composition is a transducer.

> It denotes a relation, a mapping from one regular language into
another one.

> On its “upper side”, the transducer has the three original US-style
numbers, each mapped to a corresponding European-style on the
“lower side” of the transducer.

» For the most part, the mapping is an identity relation because each
digit is mapped to itself.

» The only difference is that periods are mapped to commas, and
vice versa.

Yulia Zinova Computational Morphology: Xerox finite state tool

Loading and using a stored network

Inspecting the transducer

» We can view the upper and lower languages of the relation
independently. print upper-words displays the three US numbers;
print lower-words shows what they have been transduced into.

» The apply command maps strings on one side of the transducer to
the corresponding strings on the other side. Try apply up 0,5. Try
also apply up 0.5.

» We can also extract one of the languages from the relation. The
command lower-side net extracts from the transducer a simple
automaton that contains just the three European numbers.

Yulia Zinova Computational Morphology: Xerox finite state tool

Running XFST with a script

It is more convenient, for many purposes, to write a list of
commands to be run in batch mode without any user interaction.

Let us write a script that compiles the US-to-European transducer
and uses it to produce a file of European-style numbers from a file
of US-style numbers.

A script is an ordinary text file that can be prepared with any text
editor, such as Emacs (see xfst.script).

To run a script, tell xfst source xfst.script

Yulia Zinova Computational Morphology: Xerox finite state tool

Running XFST with a script

Defining aliases (1)

» XFST allows the user to create simple names for more complex
commands.

» For example,
alias dir system Is -l *.txt
creates a new XFST command ‘dir’ that has the same effect as
‘system Is -| *.txt’

» The chosen alias must be a single word with no hyphens,
underscores, or other special characters.

» The command print alias lists all the current aliases and their
definitions.

Yulia Zinova Computational Morphology: Xerox finite state tool

Running XFST with a script

Defining aliases (2)

» An alias can represent an arbitrary sequence of commands. To
create such an alias, the user first types only the name to be
defined.
alias ConvertAndShow

» XFST responds by prompting the user for commands.

» The list can be terminated by a special symbol, END;, with no
extra whitespace around it (alias.txt)

» now try ConvertAndShow

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview of Commands

Command Syntax

» XFST commands are in general of the form ‘<command> <type
or object>’

» <command> specifies the operation to be performed

> the second term, if any, gives some additional specification about
the type of the operation or the object it applies to.

» For example, there are several variants of the 'print’ command:
‘print net’, ‘print sigma’, ‘print words’, etc.

» All display commands and all unary operations, such as ‘lower-side
net’, apply to the network on the top of the stack.

» Some commands, such as ‘print net’ and ‘print words’, can be
followed by a name of network which has been given a name with
the ‘define’ command

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview of Commands

Short names

» Virtually all XFST commands can be abbreviated to a single word
command.

» For example, the ‘print’ part of all print commands can be dropped.
» Thus 'sigma’ as a command has the same effect as ‘print sigma’.
» Similarly, ‘regex’ and ‘read regex’ are equivalent.

» Short command names are convenient when one is working in an
interactive mode.

> It is better to use the long commands for scripts for readability.

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview of Commands

Command Classes

» The FST commands can be grouped into five classes:
1. Input/Output and Stack Commands
2. Display commands
3. Tests of network properties
4. QOperations on networks
5. System commands

» The list of commands: commands.txt

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview of Commands

Exercise

» Exercise on the Brazilian Portuguese Pronunciation (portuguese
exercise.pdf)

Yulia Zinova Computational Morphology: Xerox finite state tool

Overview of Commands

References:

Hulden, M. (2009). Foma: a finite-state compiler and library. In
Proceedings of the 12th Conference of the European Chapter of
the Association for Computational Linguistics, pages 29-32.
Association for Computational Linguistics.

Karttunen, L. (2003). Finite-state morphology.

Yulia Zinova Computational Morphology: Xerox finite state tool

	What is XFST?
	Creating a network
	Loading and using a stored network
	Running XFST with a script
	Overview of Commands

