

A Neural Graph-based Approach to VMWE Identification

Jakub Waszczuk & Rafael Ehren & Regina Stodden & Laura Kallmeyer

Heinrich Heine University, Düsseldorf, Germany

Method

- Assumption: VMWEs local in dependency structures [1,2,3,4]
- Orchestration: dependency parsing ⇒ VMWE identification
- **Reduction**: VMWE identification \Longrightarrow dependency tree labeling [4,5]
- Arc-factored: each arc separately scored as to its affinity of being a VMWE
- Neural ingredient: scoring performed using a MLP (and derivatives)

Basic encoding

- Labeling: function $\ell_E \colon E \to \mathbb{B}$ defined over the dependency arcs $E \subset V \times V$
- Encoding: $\ell_E(v,w) \coloneqq 1$ iff both v and w belong to a single VMWE occurrence
- Decoding: adjacent 1-labeled arcs assumed to form a single VMWE occurrence
- No support for single-token, disconnected, or overlapping VMWE occurrences

Extended encoding

- Labeling: arc and node labeling functions $\ell_E \colon E \to \mathbb{B}$ and $\ell_V \colon V \to \mathbb{B}$
- Limitation: inability to represent overlapping VMWE occurrences

La perfusion doit être éffectué ...

The perfusion must be done ...

Figure 1: Extended encoding applied to two Polish idioms, dać komuś cynk `give someone a tip` and nie ma co [wychodzić] `it is not worth [leaving]`, adjacent in the dependency tree. The nodes and arcs labelled with 1 are marked in **bold**.

Figure 2: Extended encoding applied to a tree fragment with a disconnected French LVC.

Local model (basic encoding)

- Input: word vectors $\boldsymbol{w} = (\boldsymbol{w}_i \in \mathbb{R}^d)_{i=1}^n$, dependency graph G = (V, E)
- Score: given $(i, j) \in E$

$$\Phi(i,j) = \mathsf{MLP}^{(1)}([\boldsymbol{w}_i; \boldsymbol{w}_j]) \in \mathbb{R}^2$$
(1)

Probability:

$$P(\ell_E(i,j) \mid \boldsymbol{w}, G) = \mathsf{SoftMax}(\Phi(i,j)) \tag{2}$$

• **Prediction**: independently for each $(i, j) \in E$ based on P

Global model (extended encoding)

- Compound labeling: function $\ell \colon E \to \{1, \dots, 8\}$ which encodes the labeling decisions $\ell_V(i), \ell_E(i,j)$, and $\ell_V(j)$ for a given $(i,j) \in E$ \Longrightarrow allows to capture the relations between the adjacent labeling decisions
- Node score. Given $i \in V$:

$$\phi_V(i) = \mathsf{MLP}^{(2)}(\boldsymbol{w}_i)_1 \in \mathbb{R}$$
(3)

• Compound score. Given $(i, j) \in E$:

$$\phi_E(i,j) = \mathsf{TweakedMLP}^{(3)}([\boldsymbol{w}_i; \boldsymbol{w}_j]) \in \mathbb{R}^8$$
 (4)

	,O,	0,1,0	0,1,1	1,1,0	1,1,1		_,O,_	0,1,0	0,1,1	1,1,0	1,1,1
$nie \rightarrow ma$	0	-1	-1	-1	0	perfusion \rightarrow doit	0	0	-1	1	-1
$ma \rightarrow co$	0	-1	-1	-1	1	doit → effectué	0	0	1	-1	-1

Table 1: Example scores which allow to capture (i) a 3-word and (ii) a disconnected VMWE

• Global score. Given a compound labeling ℓ :

$$\Phi(\ell) = \sum_{i \in V} \phi_V(i) \ell_V(i) + \sum_{(i,j) \in E} \phi_E(i,j)_{\ell(i,j)}$$
 (5)

Probability:

$$P(\ell \mid \boldsymbol{w}, G) = \frac{\exp(\Phi(\ell))}{\sum_{\ell'} \exp(\Phi(\ell'))}$$
(6)

Prediction: pick the global labeling which maximizes the global score
 ⇒ all the nodes on the VMWE border must be marked as its elements

System implementation

- Input: fastText [8] + hidden POS and dependency label embeddings
- Training objective: sum of the cross-entropies between the target and the estimated distributions for the individual arcs (marginals in the global model)
- Frameworks: Keras for the local model, Haskell backprop (automatic differentiation library) + sgd for the global model
- Repository: https://github.com/kawu/vine

Dataset

- German, French, and Polish datasets of PARSEME corpus, edition 1.1 [6]
- Tokenized, POS tagged, lemmatized, and enriched with dependencies

Pre-processing steps (automatic apart from the 3rd):

- Remove multiword tokens (e.g. the contraction du of de le `of the` in French)
- Add dummy root nodes (to enforce that dependency structures are trees)
- Add missing lemmas in French (for reliable comparison with ATILF [7])

Evaluation results

	DE			FR			PL		AVG				
		Р	R	F	_	R		Р			Р	R	F
ATILF	MWE	71.56	46.71	56.52	82.69	71.38	76.62	85.23	68.35	75.86	79.82	62.15	69.67
ATILE	Token	76.43	45.72	57.21	85.73	72.96	78.83	88.69	67.9	76.92	83.61	62.19	69.67 70.99
Local	MWE	49.64	27.15	35.10	71.04	62.08	66.67	75.54	53.98	62.97	65.41	47.98	55.36
Local	Token	68.22	39.78	50.25	80.03	68.12	73.60	79.45	54.37	64.56	75.90	54.09	55.36 63.17
Global	MWE	68.48	47.70	56.24	84.92	70.75	77.19	80.83	64.66	71.84	78.08	61.04	68.52 70.47
Giobai	Token	72.74	47.83	57.72	86.84	73.24	79.47	83.13	66.19	73.69	80.90	62.42	70.47

Table 2: General results per language and system on DEV

		DE				FR			PL			AVG		
		Р	R	F	Р	R	F	Р	R	F	Р	R	F	
ATILF	MWE	70.82	39.96	51.09	74.57	61.24	67.25	80.94	60.19	69.04	75.44	53.80	62.81	
AIILF	loken	76.03	39.69	52.16	79.83	65.93	72.22	83.21	59.48	69.37	79.69	55.03	65.10	
Local	MWE	54.36	26.31	35.45	60.26	55.42	57.74	74.46	60.00	66.45	63.03	47.24	54.00	
LOCal	MWE Token	70.3	36.82	48.38	73.96	62.08	67.50	78.95	59.57	67.90	74.48	52.82	61.81	
Global	N/\/F	69.72	44.38	54.23	74.57	60.64	66.89	82.01	66.41	73.39	75.43	57.14	65.02	
Global	Token	74.52	44.10	55.41	78.56	63.54	70.25	83.85	66.06	73.90	78.98	57.90	66.82	

Table 3: General results per language and system on TEST

		Contin-	Discon-	Multi-	Single-	Seen-in-			Identical-
		uous	tinuous	token	token	train	in-train	of-train	to-train
	ATILF	72.19	44.79	60.26	69.08	82.15	18.9	71.87	92.72
	Local	56.68	47.96	56.37	0.0	72.29	29.59	68.06	75.88
(Global	72.58	53.30	62.67	69.89	81.65	32.28	74.07	89.23

Table 4: MWE-based F-scores per VMWE challenge averaged over the three language test sets.

		VID	LVC.full	VPC.full	IRV	IAV
	ATILF	39.29	19.23	64.55	28.57	_
DI	E Local	33.67	21.87	40.29	30.77	_
	Global	35.56	22.95	72.40	32.84	_
	#	37%	8%	42%	8%	0%
	ATILF	64.47	60.9	_	73.53	_
F	R Local	51.08	53.25	_	75.93	_
	Global	66.12	61.29	_	78.47	_
	#	43%	32%	0%	22%	0%
	ATILF	46.73	50.81	-	86.08	60.0
PI	Local	13.01	64.86	_	85.71	0.0
	Global	35.51	65.62	_	87.32	69.57
	#	14%	29%	0%	48%	6%

		E	FK			
	All	Dis.	All	Dis.		
H-comb.	60.71	57.53	76.56	67.23		
Global	56.24	51.47	77.19	64.84		
	1	1				

Table 6: Comparison with H-combined [9] in terms of the MWE-based F-score (all and discontinuous VMWEs) on DEV.

	D	E	FR			
	All	Dis.	All	Dis.		
H-comb.	59.29	55.00	70.97	63.90		
Global	58.05	47.49	68.59	58.15		

Table 5: MWE-based F-scores for the selected VMWE categories on the test sets.

Table 7: Comparison with H-combined on TEST (training on TRAIN+DEV).

- Note: for each language and VMWE category, 3 global models were trained and used to calculate ensemble node and compound scores
- **ELMo**: preliminary experiments on German show better perfomance on VIDs, worse on VPCs, and clear over-fitting

Conclusions & future work

- Dependency-based VMWE encoding method with high coverage
- (Close to) SOTA results despite a fairly simple and transparent neural architecture
- ♦ Obfuscate the architecture (contextualized word embeddings, BiLSTM, self-attention, higher-order factors, ...)
- ♦ Enhance the encoding schemata (⇒ support for overlapping VMWE occurrences, encoding VMWE categories)
- Extend the method to joint dependency parsing [10] and VMWE identification

References

[1] Bejcek, E. et al. (2012). Prague Dependency Treebank 2.5 -- a revisited version of PDT 2.0. [2] Abeillé, A. and Schabes, Y. (1989). Parsing Idioms in Lexicalized TAGs. [3] Nagy T., I. and Vincze, V. (2014). VPCTagger: Detecting Verb-Particle Constructions With Syntax-Based Methods. [4] Waszczuk, J. (2018). TRAVERSAL at PARSEME Shared Task 2018: Identification of Verbal Multiword Expressions Using a Discriminative Tree-Structured Model. [5] Schneider, N. and Smith, N. A. (2015). A Corpus and Model Integrating Multiword Expressions and Supersenses. [6] Ramisch, C. et al. (2018). Annotated corpora and tools of the PARSEME Shared Task on Automatic Identification of Verbal Multiword Expressions (edition 1.1). [7] Al Saied, H., Constant, M., and Candito, M. (2017). The ATILF-LLF System for Parseme Shared Task: a Transition-based Verbal Multiword Expression Tagger. [8] Mikolov, T. et al. (2018). Advances in Pre-Training Distributed Word Representations. [9] Rohanian, O. et al. (2019). Bridging the Gap: Attending to Discontinuity in Identification of Multiword Expressions. [10] Dozat, T. and Manning, C. D. (2017). Deep Biaffine Attention for Neural Dependency Parsing.