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Method

Assumption: VMWEs local in dependency structures [1,2,3,4]

Orchestration: dependency parsing=⇒VMWE identification

Reduction: VMWE identification=⇒ dependency tree labeling [4,5]

Arc-factored: each arc separately scored as to its affinity of being a VMWE

Neural ingredient: scoring performed using aMLP (and derivatives)

Basic encoding

Labeling: function `E : E → B defined over the dependency arcsE ⊂ V × V

Encoding: `E(v, w) := 1 iff both v andw belong to a single VMWE occurrence

Decoding: adjacent 1-labeled arcs assumed to form a single VMWE occurrence

No support for single-token, disconnected, or overlapping VMWE occurrences

Extended encoding

Labeling: arc and node labeling functions `E : E → B and `V : V → B
Limitation: inability to represent overlapping VMWE occurrences

Dali im cynk , że nie ma co wychodzić

Gave them zink , that no has what leave

Figure 1: Extended encoding applied to two Polish

idioms, dać komuś cynk `give someone a tip` and nie

ma co [wychodzić] `it is not worth [leaving]`, adjacent

in the dependency tree. The nodes and arcs labelled

with 1 are marked in bold.

La perfusion doit être éffectué …

The perfusion must be done …

Figure 2: Extended encoding applied

to a tree fragment with a disconnected

French LVC.

Local model (basic encoding)

Input: word vectorsw = (wi ∈ Rd)n
i=1, dependency graphG = (V, E)

Score: given (i, j) ∈ E

Φ(i, j) = MLP(1)([wi; wj]) ∈ R2 (1)

Probability:

P (`E(i, j) | w, G) = SoftMax(Φ(i, j)) (2)

Prediction: independently for each (i, j) ∈ E based on P

Global model (extended encoding)

Compound labeling: function ` : E → {1, . . . , 8}which encodes the labeling
decisions `V (i), `E(i, j), and `V (j) for a given (i, j) ∈ E
=⇒ allows to capture the relations between the adjacent labeling decisions

Node score. Given i ∈ V :

φV (i) = MLP(2)(wi)1 ∈ R (3)

Compound score. Given (i, j) ∈ E:

φE(i, j) = TweakedMLP
(3)([wi; wj]) ∈ R8 (4)

_,0,_ 0,1,0 0,1,1 1,1,0 1,1,1

nie →→ ma 0 -1 -1 -1 0

ma →→ co 0 -1 -1 -1 1

_,0,_ 0,1,0 0,1,1 1,1,0 1,1,1

perfusion →→ doit 0 0 -1 1 -1

doit →→ effectué 0 0 1 -1 -1

Table 1: Example scores which allow to capture (i) a 3-word and (ii) a disconnected VMWE

Global score. Given a compound labeling `:

Φ(`) =
∑

i∈V
φV (i)`V (i) +

∑
(i,j)∈E

φE(i, j)`(i,j) (5)

Probability:

P (` | w, G) = exp(Φ(`))∑
`′ exp(Φ(`′))

(6)

Prediction: pick the global labeling which maximizes the global score

=⇒ all the nodes on the VMWE border must bemarked as its elements

System implementation

Input: fastText [8] + hidden POS and dependency label embeddings

Training objective: sum of the cross-entropies between the target and the

estimated distributions for the individual arcs (marginals in the global model)

Frameworks: Keras for the local model, Haskell backprop (automatic

differentiation library) + sgd for the global model

Repository: https://github.com/kawu/vine

Dataset

German, French, and Polish datasets of PARSEME corpus, edition 1.1 [6]

Tokenized, POS tagged, lemmatized, and enriched with dependencies

Pre-processing steps (automatic apart from the 3rd):

Removemultiword tokens (e.g. the contraction du of de le `of the` in French)

Add dummy root nodes (to enforce that dependency structures are trees)

Addmissing lemmas in French (for reliable comparison with ATILF [7])

Evaluation results

DE FR PL AVG

P R F P R F P R F P R F

ATILF
MWE 71.56 46.71 56.52 82.69 71.38 76.62 85.23 68.35 75.86 79.82 62.15 69.67

Token 76.43 45.72 57.21 85.73 72.96 78.83 88.69 67.9 76.92 83.61 62.19 70.99

Local
MWE 49.64 27.15 35.10 71.04 62.08 66.67 75.54 53.98 62.97 65.41 47.98 55.36

Token 68.22 39.78 50.25 80.03 68.12 73.60 79.45 54.37 64.56 75.90 54.09 63.17

Global
MWE 68.48 47.70 56.24 84.92 70.75 77.19 80.83 64.66 71.84 78.08 61.04 68.52

Token 72.74 47.83 57.72 86.84 73.24 79.47 83.13 66.19 73.69 80.90 62.42 70.47

Table 2: General results per language and system onDEV

DE FR PL AVG

P R F P R F P R F P R F

ATILF
MWE 70.82 39.96 51.09 74.57 61.24 67.25 80.94 60.19 69.04 75.44 53.80 62.81

Token 76.03 39.69 52.16 79.83 65.93 72.22 83.21 59.48 69.37 79.69 55.03 65.10

Local
MWE 54.36 26.31 35.45 60.26 55.42 57.74 74.46 60.00 66.45 63.03 47.24 54.00

Token 70.3 36.82 48.38 73.96 62.08 67.50 78.95 59.57 67.90 74.48 52.82 61.81

Global
MWE 69.72 44.38 54.23 74.57 60.64 66.89 82.01 66.41 73.39 75.43 57.14 65.02

Token 74.52 44.10 55.41 78.56 63.54 70.25 83.85 66.06 73.90 78.98 57.90 66.82

Table 3: General results per language and system on TEST

Contin-

uous

Discon-

tinuous

Multi-

token

Single-

token

Seen-in-

train

Unseen-

in-train

Variant-

of-train

Identical-

to-train

ATILF 72.19 44.79 60.26 69.08 82.15 18.9 71.87 92.72

Local 56.68 47.96 56.37 0.0 72.29 29.59 68.06 75.88

Global 72.58 53.30 62.67 69.89 81.65 32.28 74.07 89.23

Table 4: MWE-based F-scores per VMWE challenge averaged over the three language test sets.

VID LVC.full VPC.full IRV IAV

DE

ATILF 39.29 19.23 64.55 28.57 -

Local 33.67 21.87 40.29 30.77 -

Global 35.56 22.95 72.40 32.84 -

# 37% 8% 42% 8% 0%

FR

ATILF 64.47 60.9 - 73.53 -

Local 51.08 53.25 - 75.93 -

Global 66.12 61.29 - 78.47 -

# 43% 32% 0% 22% 0%

PL

ATILF 46.73 50.81 - 86.08 60.0

Local 13.01 64.86 - 85.71 0.0

Global 35.51 65.62 - 87.32 69.57

# 14% 29% 0% 48% 6%

Table 5: MWE-based F-scores for the selected

VMWE categories on the test sets.

DE FR

All Dis. All Dis.

H-comb. 60.71 57.53 76.56 67.23

Global 56.24 51.47 77.19 64.84

Table 6: Comparison with H-combined

[9] in terms of the MWE-based F-score

(all and discontinuous VMWEs) on DEV.

DE FR

All Dis. All Dis.

H-comb. 59.29 55.00 70.97 63.90

Global 58.05 47.49 68.59 58.15

Table7: ComparisonwithH-combinedon

TEST (training on TRAIN+DEV).

Note: for each language and VMWE category, 3 global models were trained and

used to calculate ensemble node and compound scores

ELMo: preliminary experiments on German show better perfomance on VIDs,

worse on VPCs, and clear over-fitting

Conclusions & future work

Dependency-based VMWE encoding method with high coverage

(Close to) SOTA results despite a fairly simple and transparent neural architecture

� Obfuscate the architecture (contextualized word embeddings, BiLSTM,

self-attention, higher-order factors, …)

� Enhance the encoding schemata (⇒ support for overlapping VMWE occurrences,

encoding VMWE categories)

� Extend themethod to joint dependency parsing [10] and VMWE identification
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