
Phrase Extraction Algoritghm

Jakub Waszczuk

December 2018

1 Naive Algorithm
The naive phrase extraction algorithm (Alg. 1) considers all possible phrase
pairs (ē, f̄) given sentence pair (e,f) one by one. Each such phrase pair is
added to the resulting set if it is consistent with the given alignment relation A.
Recall that, graphically, each phrase pair (ē, f̄) corresponds to a rectangle R in

Algorithm 1 Naive algorithm
F := ∅
for each i, i′ : 1 ≤ i ≤ i′ ≤ n do

for each j, j′ : 1 ≤ j ≤ j′ ≤ m do
let f̄ = (fi, . . . , f

′
i)

let ē = (ej , . . . , e
′
j)

if (f̄ , ē) consistent with A then
F := F ∪ (f̄ , ē)

end if
end for

end for

the tabular representation of A, and that it is consistent if:

• R is non-empty (at least one marked cell) and

• for each column/row that intersects R, all its marked cells must be in R

The overal computation cost of the naive algorithm is Θ(m2 × n2) times the
cost of checking the consistency of a given rectangle (phrase pair) R w.r.t. A.
The latter is not negligible, hence the total cost is unsatisfactory. There is a
better way, fortunately.

2 Improved Algorithm
The improved algorithm (Alg. 2) considers all possible English phrases ē for a
given sentence pair. For each such English phrase, it:

1. Identifies the minimal matching foreign phrase f̄

2. Checks if (ē, f̄) is consistent with A

1



Algorithm 2 Improved algorithm
F := ∅
for each ebeg, eend : 1 ≤ ebeg ≤ eend ≤ m do

// Find the minimal matching foreign phrase
(fbeg, fend)←MinimalMatching(ebeg, eend)
// Extract the phrase and its possible extensions
F ← F ∪Extract(ebeg, eend, fbeg, fend)

end for
function MinimalMatching(ebeg, eend)

// Find the minimal matching foreign phrase
(fbeg, fend)← (n + 1, 0)
for each (e, f) ∈ A do

if ebeg ≤ e ≤ eend then
fbeg ← min(f, fbeg)
fend ← max(f, fend)

end if
end for
return (fbeg, fend)

end function
function Extract(ebeg, eend, fbeg, fend)

// Check if at least one alignment point
return ∅ if fend = 0
// Check if alignments points violate consistency
for each (e, f) ∈ A do

return ∅ if fbeg ≤ f ≤ fend and (e < ebeg or e > eend)
end for
E ← ∅
fb = fbeg
repeat

fe = fend
repeat

Add phrase (ebeg . . . eend, fb . . . fe) to E
fe = fe + 1

until fe aligned
fb = fb − 1

until fb aligned
return E

end function

2



3. If so, (ē, f̄) is added to the resulting set, as well as all „extensions“ covering
neighboring non-aligned words (both foreign and English)

This algorithm is faster than the naive one because, for a given ē, it doesn’t
consider all possible foreign phrases f̄ , only the relevant ones.

Proposition 1. The improved algorithm 2 is not only faster than algorithm 1
but also correct – both calculate the same set of phrase pairs.

Let x(i,j) be the phrase spanning (i, j) in sentence x. To prove the above
proposition we need to show that, if (ē, f(fbeg,fend)) is consistent with A, then:

1. The minimal matching phrase f(fbeg,fend) is really minimal – i.e., for any
foreign span (i, j) such that either i > fbeg or j < fend, (ē, f(i,j)) is not
consistent with A.

2. Extending f(fbeg,fend) with neighboring non-aligned words (both foreign
and English) leads to a consistent phrase pair.

3. Extending f(fbeg,fend) with neighboring aligned words leads, again, to a
inconsistency.

We now proceed to show the first property. Let i > fbeg (the proof is analogous
in case j < fend). From the definition of MinimalMatch, we can see that
(e, fbeg) ∈ A for some e : ebeg ≤ e ≤ eend. Since ebeg ≤ e ≤ eend and (e, fbeg) ∈
A, consistency requires that i ≤ fbeg ≤ j. However, that contradicts the initial
assumption that i > fbeg.

3


	Naive Algorithm
	Improved Algorithm

