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1 Composing conditional distributions
The goal of this section is to show that the composition of two conditional
distributions P (X | Y ) and P (Y | Z) via simple multiplication leads to a valid
conditional distribution P (X,Y | Z).

Remark. We will be only concerned with one property of conditional distribu-
tion P (X | Y ) – namely, that for any y ∈ Val(Y ):∑

x∈Val(x)

P (X = x | Y = y) = 1 (1)

where Val(X) represents X’s codomain (the set of values that X can take).

Remark. In the following, we rely on simplified notation and write P (x) to
denote P (X = x), P (x | y) to denote P (X = x | Y = y), etc., as long as the
corresponding variables are clear from the context.

Proposition 1. Let X, Y , and Z be three random variables, and P (X | Y ),
P (Y | Z) be two conditional distributions. Then, P (X,Y | Z) defined as:

P (X,Y | Z) = P (X | Y )× P (Y | Z) (2)

which basically means:

P (X = x, Y = y | Z = z) = P (X = x | Y = y)× P (Y = y | Z = z) (3)

is also a valid conditional distribution. In particular, for each z ∈ Val(Z):∑
x∈Val(X),y∈Val(Y )

P (x, y | z) = 1 (4)

Proof. First of all,
∑
x∈Val(X),y∈Val(Y ) means that we sum over all possible pairs

of values (x, y) (cartesian product of Val(X) and Val(Y )). This is equivalent to
summing over (i) all possible values of Y and, for each such y ∈ Val(Y ), (ii) all
possible values of X. Hence, the LHS of Eq. 4 can be rewritten as:∑

y∈Val(Y )

∑
x∈Val(X)

P (x, y | z)

1



By definition (i.e., Eq. 3), we can split P (x, y | z) as P (x | y)× P (y | z):∑
y∈Val(Y )

∑
x∈Val(X)

P (x | y)× P (y | z)

Since P (y | z) does not depend on x, we can extract it from the inner sum:∑
y∈Val(Y )

P (y | z)
( ∑
x∈Val(X)

P (x | y)
)

Since P (X | Y ) is a conditional distribution,
∑
x∈Val(X) P (x | y) = 1. Hence:∑

y∈Val(Y )

P (y | z)× 1 =
∑

y∈Val(Y )

P (y | z)

But P (Y | Z) is also a conditional distribution, and therefore:∑
y∈Val(Y )

P (y | z) = 1

2 Number of tableaux
Proposition 2. Given input f , output e, and alignment a ∈ A(m,n), there are(

m− φ0
φ0

)
×

n∏
i=1

φi! (5)

different tableaux t ∈ Te,f (a) consistent with alignment a.

2.1 Fertility
First of all, let’s show the reason for the factor

∏n
i=1 φi!. For the moment, let’s

focus on the example from the lecture and the word zum with fertility 2. There
are two (2! = 1 · 2) possible ways of translating zum to to the:

• zum is lexically translated to to the and kept intact in the distrotion step

• zum is lexically translated to the to and reordered in the distrotion step

Both options are represented on the tableau below.

zum5 zum5 zum5 zum5

lexical translation

to5 the5 the5 to5

distortion

to5 the6 to5 the6
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In general, for a word on position i ∈ {1, . . . , n} with fertility φi, the correspond-
ing translations (all consistent with the same alignment a) can be generated in
any order and, then, reordered in the distortion step. Therefore, all the φi!
permutations have to be considered.

In total, we have to individually consider all the input positions i and the
φi! possible ways of getting them translated to the corresponding output words,
hence the factor

∏n
i=1 φi!.

2.2 NULL insertion
As described during the lecture, NULL is inserted with probability p0 after each
word generated during the fertility step. However, NULL is always inserted with
index 0 and any output word on position i aligned to NULL factors in the same
distortion probability P (i | 0,m, n), regardless of where this NULL has been
exactly inserted.

For instance, the following three tableaux (where x1, x2, x3 result from the
ferility step) all correspond to the same alignment:
x1 x2 x3

x1 NULL0 x2 x3

y1 y2 y3

x1 x2 x3

x1 x2 NULL0 x3

y1 y2 y3

x1 x2 x3

x1 x2 x3 NULL0

y1 y2 y3

In general, we need to answer the following question: what is the number
of different vectors resulting from the NULL insertion step, all with the same
number of NULL tokens (φ0)? The answer is

(
m−φ0

φ0

)
, which stems from the

following proposition.1

Proposition 3. Let x = (x1, x2, . . . , xn) be a sequence of length n and k ∈
{1, . . . , n}. Then, there are

(
n−k
k

)
different subsequences y of x of length k such

that x1 does not belong to y and:

∀ni=2 either xi−1 or xi does not belong to y (6)

Put differently, we are only interested in subsequences y which do not contain
adjacent elements from the source sequence x and which do not contain x’s first
element. This corresponds to the NULL insertion step, where at most one NULL
can be inserted after each word resulting form the fertility step.

Proof. We prove the above proposition by induction on n and k.

n ≥ 1, k = 1: In this case,
(
n−1
1

)
= n − 1, which is correct because y contains single

element which can be any xi apart from x1.

n ≥ 1, k > 1: Let’s consider the last elemement xn of sequence x. We have two possi-
bilities:

1We don’t have to account for different permutations of output words aligned to NULL
because, implicitely, IBM-3 assumes that these are generated in an ascending order. A similar
assumption is adopted in IBM-4 and IBM-5 with respect to all input words, hence no need
for the factor

∏n
i=1 φi! at all in those higher models.
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1. xn is a part of y. Then, we still need to account for subsequences of
(x1, . . . , xn−2) of length k − 1.2 From the induction hypothesis, the
number of such subsequences is

(
n−2−(k−1)

k−1
)
=
(
n−k−1
k−1

)
.

2. xn is not a part of y. Then, we account for the subsequences of
(x1, . . . , xn−1) of length k, whose number is (from the induction hy-
pothesis) equal to

(
n−k−1

k

)
.

In total, this gives
(
n−k−1
k−1

)
+
(
n−k−1

k

)
, which (following the standard re-

cursive calculation rule for binomial coefficients)3 is equal to
(
n−k
k

)
.

3 Deficiency of IBM-3
Let’s consider a simple case where m = 2, i.e., the output sentence consists of
two words only. Below, all distortions possible in this case are represented, but
only the first two are valid (represent permutations):

x1 x2

y1 y2

x1 x2

y1 y2

x1 x2

y1 y2

x1 x2

y1 y2

We are also given distortion probabilities, which must satisfy certain properties:4

• P (1 | 1, 2, n) + P (2 | 1, 2, n) = 1

• P (1 | 2, 2, n) + P (2 | 1, 2, n) = 1

Observation 1. The total probability of all distortions in our example (includ-
ing the invalid ones) is equal to 1.

Proof. The total probability of all distortions is:

P (1 | 1, 2, n) · P (2 | 2, 2, n) +
P (1 | 2, 2, n) · P (2 | 2, 2, n) +
P (1 | 1, 2, n) · P (2 | 1, 2, n) +
P (1 | 2, 2, n) · P (2 | 1, 2, n)

This is equal to:(
P (1 | 1, 2, n) + P (2 | 1, 2, n)

)
×
(
P (1 | 2, 2, n) + P (2 | 2, 2, n)

)
which, given that P (1 | 1, 2, n) + P (2 | 1, 2, n) = 1 and P (1 | 2, 2, n) + P (2 |
2, 2, n) = 1, is equal to 1 as well.

The problem is that, in IBM-3, we sum over the valid distortions only, i.e.,
distortions which represent permutations. But, since the invalid distortions can
get non-zero probabilities (e.g., P (1 | 1, 2, n) ·P (2 | 1, 2, n) in the example above
can be > 0), the total probability attributed to valid distortions only can be
smaller than 1.

2Note that xi−1 cannot belong to y in this case because adjacent elements cannot be in y.
3We don’t cite this recursive rule, but you can find it easilly e.g. on wikipedia.
4The input size n is not fixed, it depends on the fertility of words.
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