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Bayes’ theorem

Bayes’ theorem

P(B |A) =
P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)
=

P(A ∩ B)

P(B)
·

P(B)

P(A)
=

P(A |B) · P(B)

P(A)
(1)
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Bayes’ theorem

Bayes’ theorem: example

Example

Suppose we know that we have a biased coin, with p = 0.4 (probability of getting heads).
We throw the coin and get the following sequence:

H,T ,T ,T ,H,H,T ,H,T ,H (2)

Thus, instead of getting H the expected 4 times, we got it 5 times.

We can calculate the probability of such an event happening:

P(5) =

(
10
5

)
× 0.45 × 0.65 = 0.201

Suppose, however, that the coin is not biased. Then we get:

P(5) =

(
10
5

)
× 0.55 × 0.55 = 0.236

Question

Let’s assume that we know that the coin is either biased with p = 0.4 or not biased at all
(p = 0.5). What is the probability of the coin being biased if we throw 5 heads out of 10?
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Bayes’ theorem

Bayes’ theorem: example

Events

B – the coin is biased with h = 0.4

N – the coin is not biased (h = 0.5)

E – we get heads 5 times in 10 trials

Result

Let α B P(B). Then:

P(B |E) = 0.201 ·
α

0.236 − 0.035α

Calculations

P(B |E) = P(E |B) ·
P(B)

P(E)
= 0.201 ·

α

P(E)

P(E) = P(E ∩ B) + P(E ∩ N) = P(E |B) · P(B) + P(E |N) · P(N) =

0.201 · α + 0.236 · (1 − α) = 0.236 − 0.035α
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Bayes’ theorem

Bayes’ theorem: example

Events

B – the coin is biased with h = 0.4

N – the coin is not biased (h = 0.5)

E – we get heads 5 times in 10 trials

Result

Let α B P(B). Then:

P(B |E) = 0.201 ·
α

0.236 − 0.035α

Prior

P(B) = α can be seen as a parameter representing our prior knowlege about the coin.

if α = 0.5, then P(B |E) = 0.46

if α = 0.6, then P(B |E) = 0.56
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Bayes’ theorem

Bayes’ theorem

General interpretation

Let α represent model parameters and D the observed event (data!). Then:

P(α|D) =
P(D |α) · P(α)

P(D)
(3)

where:

P(D |α) – the probability of D given parameters α

P(D) – the probability of D regardless of parameters

P(α) – the prior
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Parameter estimation

Argmax

Definition

arg max
x∈X

f(x) = {x : x ∈ X ,∀y∈x f(x) ≥ f(y)} (4)

Example

Proposition

Let C > 0 be a constant. Then, arg maxx∈X (Cf(x)) = arg maxx∈X (f(x)).
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Parameter estimation

Maximum a-posteriori (MAP) esimation

MAP method

Given an observed event D and the parameter space Θ, the MAP estimates θMAP are
defined as:

θMAP = arg max
θ∈Θ

P(θ|D) = arg max
θ∈Θ

P(D |θ) · P(θ)

P(D)
= arg max

θ∈Θ
P(D |θ) · P(θ) (5)

Example

We get back to the example with a coin which is either biased (p = 0.4) or not (p = 0.5):

Θ = {p = 0.4, p = 0.5} (somewhat informally)

D – the event of getting heads 5 times in 10 trials

Let’s assume uniform prior (P(p = 0.4) = P(p = 0.5) = 0.5)

P(D |p = 0.4) · P(p = 0.4) = 0.201 × 0.5 = 0.1005

P(D |p = 0.5) · P(p = 0.5) = 0.236 × 0.5 = 0.118

arg maxθ∈Θ P(D |θ) · P(θ) = {p = 0.5}
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Parameter estimation

Likelihood function

Definition

Let θ represent model parameters and D an event. The likelihood of θ given D is defined as:

LD(θ) = P(D |θ) (6)

Warning

The likelihood is not a probability. In particular, the following does not necessarily hold:∑
θ∈Θ

LD(θ) = 1 (7)

where Θ is the space of possible parameter values.

For instance, in the example with the coin:

P(D |p = 0.4) + P(D |p = 0.5) = 0.201 + 0.236 = 0.437 , 1.
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Parameter estimation

Maximum likelihood estimation (MLE)

MLE method

Given an observed event D and the parameter space Θ, the maximum likelihood estimates
θML are defined as:

θML = arg max
θ∈Θ

LD(θ) = arg max
θ∈Θ

P(D |θ) (8)

Example

We get back to the example with a coin which is either biased (p = 0.4) or not (p = 0.5):

Θ = {p = 0.4, p = 0.5} (somewhat informally)

D – the event of getting heads 5 times in 10 trials

P(D |p = 0.4) = 0.201

P(D |p = 0.5) = 0.236

arg maxθ∈Θ P(D |θ) = {p = 0.5}
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Parameter estimation

MAP vs ML estimation

Proposition

Determining the ML estimates is equivalent with finding the MAP estimates assuming
uniform prior (meaning P(θ1) = P(θ2) for any two θ1, θ2 ∈ Θ).

Note: uniform prior is not always the best choice, but it makes sense if we don’t know
anything about the parameters in the first place.

Proof

Using Bayes’ theorem:

arg max
θ

P(θ|D) = arg max
θ

P(D |θ) · P(θ)

P(D)
= arg max

θ
P(D |θ) · P(θ) = arg max

θ
LD(θ) · P(θ)

Since we assume uniform prior, P(θ) is effectively a constant. Therefore:

arg max
θ

P(θ|D) = arg max
θ

LD(θ) · P(θ) = arg max
θ

LD(θ)
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Parameter estimation

Maximum likelihood estimation in language modeling

Example

Suppose we have a corpus of 106 words in which the word rabbit occurs 60 times. What is
the probability of rabbit occuring in a text?

Assumption

The number of occurrences of rabbit follows a binomial distribution with p = P(rabbit).

MLE solution

Let D be the observation made – in a text of 106 words rabbit occurs 60 times

The likelihood of a particular value of the parameter p is:

LD(p) = P(D |p) =

(
106

60

)
× p60 · (1 − p)106−60

When maximizing LD(p), we can ignore the constant (106

60 ):

p̂ML = arg maxp LD(p) = arg maxp(p60 · (1 − p)106−60) =
60
106

Jakub Waszczuk (HHU) Statistical Machine Translation: Language (N-gram) Models Winter Semester 2018/19 15 / 31



Parameter estimation

Maximum likelihood estimation in language modeling

In general

Let’s say that:

We have a corpus of n words

A word w occurs in this corpus k times

We assume binomial distributions

Then, the ML estimates are:

P̂ML (w) =
k
n

(9)

Good exercise – the proof (sketch below)

Consider the binomial distribution for each word w separately (see the previous slide)

Determine the value of the parameter p = P(w) such that:

∂LD(p)

∂p
= 0 (10)

By the way: we have just discovered the so-called unigram language model!
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N-gram models
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N-gram models

Language models in SMT

Motivation

We want an SMT system to:

output words that are true to the original in meaning – translation model

string the words together in fluent English sentences – language model

P(e|f) = PTM(e|f) · PLM(e) (11)

Examples

The language model supports difficult decisions about word order and grammaticality:

PLM(the house is small) > PLM(small the is house)

and appropriate word translation (Haus→ house, home, building?) in the given context:

PLM(I am going home) > PLM(I am going house)
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N-gram models

Language modeling: naive approach

Question

Let w = w1,w2, . . . ,wn be a sentence of length n. How can we estimate P(w)?

Naive approach

Take a large collection of sentences T

Assume the binomial distribution

P̂ML (w) =
C(w)

|T | , where C(w) is the count – number of occurrences of w in T

Issue

There are infinitely many sentences one can produce

Most long sequences of words will not occur in T at all
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N-gram models

Language modeling: scaling down

Idea

Break down the calculation of P(w) into smaller steps:

Assume a sequence of random variables W1, W2, W3, . . .

Variable Wi represents the word on position i

We introduce a special symbol o, which represents the end of sentence

P(w) = P(W1 = w1,W2 = w2, . . . ,Wn = wn,Wn+1 = o)

Example

P(I am going home) = P(W1 = I,W2 = am,W3 = going,W4 = home,W5 = o)
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N-gram models

Language modeling: chain rule

Chain rule (extension of the product rule)

P(W1 = w1,W2 = w2,W3 = w3, . . . ,Wn = wn) =

P(W1 = w1)

× P(W2 = w2|W1 = w1)

× P(W3 = w3|W1 = w1,W2 = w2)

× · · ·

× P(Wn = wn |W1 = w1, . . . ,Wn−1 = wn−1)
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N-gram models

Language modeling: Markov assumptions

Markov property of order 0

Formally:

P(Wk = wk |W1 = w1, . . . ,Wk−1 = wk−1) = P(Wk = wk ) (12)

Alternatively, using A |= B to denote independence of A and B:

Wk |= W1,W2, . . . ,Wk−1 (13)

In words:

The probability of Wk = wk does not depend on the preceding words at all
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N-gram models

Language modeling: Markov assumptions

Markov property of order 1

Formally:

P(Wk = wk |W1 = w1, . . . ,Wk−1 = wk−1) = P(Wk = wk |Wk−1 = wk−1) (14)

Alternatively, using A |= B | C to denote conditional independence of A and B given C:

Wk |= W1,W2, . . . ,Wk−2 | Wk−1 (15)

In words:

The probability of Wk = wk does not depend on the preceding words w1, w2, . . . ,
provided that we know wk−1
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N-gram models

Language modeling: Markov assumptions

Markov property of order n

Formally:

P(Wk = wk |W1 = w1, . . . ,Wk−n = wk−n, . . . ,Wk−1 = wk−1) = (16)

P(Wk = wk |Wk−n = wk−n, . . . ,Wk−1 = wk−1)

Alternatively, using A |= B | C to denote conditional independence of A and B given C:

Wk |= W1,W2, . . . ,Wk−n−1 | Wk−n,Wk−n+1, . . . ,Wk−1 (17)

In words:

The probability of Wk = wk does not depend on the preceding words w1, w2, . . . ,
provided that we know wk−n, wk−n+1, . . . , wk−1
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N-gram models

Language modeling: Markov chain

Markov chain

Let W1,W2, . . . be a sequence of random variables. We call it a Markov chain of order n if it
satisfies the Markov property of order n.

Stationary Markov chain

We say that a Markov chain is stationary if the distributions of its variables do not depend
on their position in the sequence. For instance, in the 1-order case:

P(Wi = x |Wi−1 = y) = P(Wj = x |Wj−1 = y) (18)

for any two i, j > 1.
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N-gram models

Language modeling: n-grams

Naming convention

In NLP/CL, a stationary Markov chain of order n − 1 is also called an n-gram model.

Markov chain of order 0 – unigram model

Markov chain of order 1 – bigram model

Markov chain of order 2 – trigram model

In general, the n-gram model captures relations between n adjacent words at a time.
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N-gram models

Language modeling: n-gram parameters

Notation

Let V be a vocabulary (a set of words). Let also y ∈ V and x1, . . . , xn ∈ Vn, where n is the
order of a Markov chain. Thanks to the stationary property, we can simplify:

P(Wi = y |Wi−n = x1,Wi−n+1 = x2, . . . ,Wi−1 = xn) (19)

as:
P(y |x1, . . . , xn) (20)

because, regardless of the position i, P(Wi = y |Wi−n = x1, . . . ,Wi−1 = xn) is the same.

Parameters

The parameter set of a stationary Markov chain of order n takes the following form:

{P(y |x) : y ∈ V , ~x ∈ Vn} (21)

where for each ~x ∈ Vn: ∑
y∈V

P(y |~x) = 1 (22)
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N-gram models

Language modeling: example

Example

The following table represents the probabilities in a bigram model. The special symbol n
represents the only word that can be at the beginning of a sentence.

P(·) P(·|n) P(·|the) P(·|house) P(·|is) P(·|small) P(·|o)

n 1 0 0 0 0 0 0
the 0 0.4 0 0.1 0.4 0 0
house 0 0.1 0.5 0 0.2 0.5 0
is 0 0.3 0 0.5 0 0 0
small 0 0.2 0.5 0.1 0.4 0 0
o 0 0 0 0.3 0 0.5 1

What are the probabilities of the following sentences in this model?

,,the house is small”

,,is the house small”

,,small the is house”
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N-gram models

Maximum likelihood estimation in n-grams

Number of occurrences

Let T be a training corpus. We define C(w1, . . . ,wk ) as the number of occurrences (count)
of the sequence w1, . . . ,wk in T .

Bigram (n = 1)

PML (y |x) =
C(x, y)

C(x)
(23)

Example

Let T = (n, a, a, a, b , b , b , b , a, a, a, a,o). Then:

PML (a |a) =

PML (o|a) =

PML (a |b) =
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PML (y |x) =
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N-gram models

Maximum likelihood estimation in n-grams

In general

PML (y |x1, . . . , xn) =
C(x1, . . . , xn, y)

C(x1, . . . , xn)
(24)

Example with n = 2 (trigram model)

Let C = (n,n, a, a, a, b , b , b , b , a, a, a, a,o,o). Then:

PML (a |a, a) =

PML (b |a, a) =

Issue

The higher the value of n:

The smaller the number of occurrences of (x1, . . . , xn, y) in training data

The higher the number of parameters of the model (training data size stays the same)

Result: the estimates are not reliable.

Jakub Waszczuk (HHU) Statistical Machine Translation: Language (N-gram) Models Winter Semester 2018/19 30 / 31



N-gram models

Maximum likelihood estimation in n-grams

In general

PML (y |x1, . . . , xn) =
C(x1, . . . , xn, y)

C(x1, . . . , xn)
(24)

Example with n = 2 (trigram model)

Let C = (n,n, a, a, a, b , b , b , b , a, a, a, a,o,o). Then:

PML (a |a, a) = 3
5

PML (b |a, a) =

Issue

The higher the value of n:

The smaller the number of occurrences of (x1, . . . , xn, y) in training data

The higher the number of parameters of the model (training data size stays the same)

Result: the estimates are not reliable.

Jakub Waszczuk (HHU) Statistical Machine Translation: Language (N-gram) Models Winter Semester 2018/19 30 / 31



N-gram models

Maximum likelihood estimation in n-grams

In general

PML (y |x1, . . . , xn) =
C(x1, . . . , xn, y)

C(x1, . . . , xn)
(24)

Example with n = 2 (trigram model)

Let C = (n,n, a, a, a, b , b , b , b , a, a, a, a,o,o). Then:

PML (a |a, a) = 3
5

PML (b |a, a) = 1
5

Issue

The higher the value of n:

The smaller the number of occurrences of (x1, . . . , xn, y) in training data

The higher the number of parameters of the model (training data size stays the same)

Result: the estimates are not reliable.

Jakub Waszczuk (HHU) Statistical Machine Translation: Language (N-gram) Models Winter Semester 2018/19 30 / 31



N-gram models

Language modeling: Markov chain

How to choose the order?

It’s a trade-off:

n-th order Markov property implies (n + 1)-th order Markov property

Too large n leads to sparseness issues (not enough data to estimate reliable statistics)

Too small n is not realistic (,,is the house you’ve been renting for the last two years small?”)

Interpolation can be used to combine several models of different orders

Why not syntax-based models?

It’s a question of complexity (both practical and conceptual):

syntax-based models can be more accurate, but

are more difficult to integrate with translation models
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