Statistical Machine Translation Probability Theory II

Jakub Waszczuk

Heinrich Heine Universität Düsseldorf

Winter Semester 2018/19

Recap

Probability space

A probability space is a triple $(\Omega, \mathfrak{N}, P)$, where:
$\square \Omega$ is the sample space (the set of possible outcomes)
$\square \mathfrak{U} \subseteq \wp(\Omega)$ is the algebra of events
■ $P: \mathfrak{A} \rightarrow[0,1]$ is the function assigning probabilities to events

Sum rule

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{1}
\end{equation*}
$$

Conditional probability

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{2}
\end{equation*}
$$

Product rule

$$
\begin{equation*}
P(A \cap B)=P(A \mid B) \cdot P(B) \tag{3}
\end{equation*}
$$

Today

- Random variables
- Independence
- Bayes' theorem

Partition

Special case

$$
\begin{equation*}
P(A)=P(A \cap B)+P(A \cap \bar{B}) \tag{4}
\end{equation*}
$$

In general

Let $B=B_{1}, \ldots, B_{n}$ be a sequence of mutually disjoint events such that $\bigcup_{i=1}^{n} B_{i}=\Omega$. We call it a partition. Then:

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \tag{5}
\end{equation*}
$$

Throwing coins

Proposition

Suppose you throw a coin n times and that the probability of getting heads is h. Then, the probability of throwing heads k times is:

$$
\begin{equation*}
p(k)=\binom{n}{k} \times h^{k} \times(1-h)^{(n-k)} \tag{6}
\end{equation*}
$$

Interpretation

■ The probability of a sequence with k heads and $n-k$ tails is $h^{k} \times(1-h)^{(n-k)}$

- $\binom{n}{k}$ is the number of distinct sequences with k heads and $n-k$ tails

Random Variables

What we assume

Let $(\Omega, \mathfrak{Y}, P)$ be a probability space. For simplicity, we assume that it is discrete:
$■ \mathfrak{A}=\wp(\Omega)$ (all events and outcomes are possible)
■ Function $p: \Omega \rightarrow[0,1], p(x):=P(\{x\})$

Definition

A random variable is a function $X: \Omega \rightarrow \mathbb{R}$ which assignes a real value to every possible outcome.

Example

You roll a die in a casino. If you roll 6, you win 60\$. Otherwise, you lose 10\$. Is it worth it?
Let's formalize this:
■ $\Omega=\{1,2,3,4,5,6\}$
■ Random variable:

$$
X(\omega)= \begin{cases}60 & \text { if } \omega=6 \\ -10 & \text { otherwise }\end{cases}
$$

Random Variables

Notation

A notation we will see frequently is $P(X=x)$, for a given variable X and its possible value x. What does it mean?
($X=x$) denotes the set of outcomes (event) for which the value of the variable X is x :

$$
\begin{equation*}
\{\omega: \omega \in \Omega, X(\omega)=x\} \tag{7}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
P(X=x)=P(\{\omega: \omega \in \Omega, X(\omega)=x\})=\sum_{\omega \in \Omega: X(\omega)=x} p(\omega)=\sum_{\omega \in \Omega} p(\omega)[X(\omega)=x] \tag{8}
\end{equation*}
$$

Expected Value

Definition

The expected value (or expectation) of X is defined as:

$$
\begin{equation*}
\mathbb{E}(X)=\sum_{x \in \operatorname{lng}(X)} x \cdot P(X=x) \tag{9}
\end{equation*}
$$

Equivalently:

$$
\begin{equation*}
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \cdot p(\omega) \tag{10}
\end{equation*}
$$

Example

Getting back to our casino example; assuming that the die is fair:

$$
\mathbb{E}(X)=60 \cdot \frac{1}{6}+(-10) \cdot \frac{5}{6}=1 \frac{2}{3}
$$

But if, for example, $p(6)=\frac{1}{8}$:

$$
\mathbb{E}(X)=60 \cdot \frac{1}{8}+(-10) \cdot \frac{7}{8}=-1.25
$$

Random Variables

The Law of Large Numbers

Suppose we have a probability space and a corresponding random variable X. Suppose also that we randomly draw a given number of outcomes $\omega_{i} \in \Omega$ from our space and store the values $X\left(\omega_{i}\right)$ as results.

Then, according to the law of the large numbers, the mean of the obtained results is less likely to deviate from the expected value $\mathbb{E}(X)$ as the number of iterations get larger.

Corollary

In our casino example, if the dice is fair, the player will win, in the long run, $1 \frac{2}{3} \$$ per roll.
Or, if $p(6)=\frac{1}{8}$, loose $1.25 \$$ per roll.

Variance and Standard Deviation

Definition

The variance of X measures the extent to which the actual values of the variable differ from the expected one:

$$
\begin{equation*}
\mathbb{V}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\sum_{x \in \operatorname{lmg}(X)}(x-\mathbb{E}(X))^{2} \cdot P(X=x) \tag{11}
\end{equation*}
$$

The standard deviation is defined as:

$$
\begin{equation*}
\sigma(X)=\sqrt{\mathbb{V}(X)} \tag{12}
\end{equation*}
$$

Example

Getting back again to the casino and assuming that the die is fair:

$$
\begin{gathered}
\mathbb{V}(X)=\left(60-1 \frac{2}{3}\right)^{2} \cdot \frac{1}{6}+\left(-10-1 \frac{2}{3}\right)^{2} \cdot \frac{5}{6} \approx 680 \\
\sigma(X)=\sqrt{680.5555555555} \approx 26
\end{gathered}
$$

Intuitively, the expected gain of the player is therefore equal to $1 \frac{2}{3} \pm 26$.

Example

Setup

Let's change the rules of the game:

- As before: if you roll 6, you win 60\$; otherwise, you lose $10 \$$.

■ The change: you have to roll the die 5 times, no more, no less.

Questions

$■$ What is the expected gain of the player in this new version of the game?
$■$ What is the variance and standard deviation of the gain?

Random Variables

Operators

■ $X+Y$

$$
\begin{equation*}
(X+Y)(\omega):=X(\omega)+Y(\omega) \tag{13}
\end{equation*}
$$

■ $X Y$

$$
\begin{equation*}
(X Y)(\omega):=X(\omega) \cdot Y(\omega) \tag{14}
\end{equation*}
$$

Calculation toolkit

■ if α is a constant, then $\mathbb{E}(\alpha)=\alpha$
■ if α is a constant, then $\mathbb{V}(\alpha)=0$
■ $\mathbb{E}(\mathbb{E}(X))=\mathbb{E}(X)$
$\square \mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$
■ if α is a constant, $\mathbb{E}(\alpha \cdot X)=\alpha \cdot \mathbb{E}(X)$
■ $\mathbb{E}(X Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$, but only if X and Y are independent. (TRICKY TO PROVE)
■ $\mathbb{E}(X-\mathbb{E} X)=0$
■ $\mathbb{V}(X)=\mathbb{E}\left(X^{2}\right)-(E(X))^{2}$
$■ \mathbb{V}(X+Y)=\mathbb{V}(Y)+\mathbb{V}(Y)$, provided that X and Y are independent.

Random Variables

Marginalization

- Suppose we have two random variables X, Y over the same probability space.

■ Suppose that we also know the joint probability distribution of X and Y, that is, we know $P(X=x, Y=y)$ for any two values x, y of the random variables X, Y.
■ Question: How can we determine $P(X=x)$?

$$
\begin{equation*}
P(X=x)=\sum_{y \in \operatorname{lmg}(Y)} P(X=x, Y=y) \tag{15}
\end{equation*}
$$

This process is called marginalization.

Proof (intuition)

■ $\{Y=y: y \in \operatorname{Img}(Y)\}$ is a partition of Ω
\square Let $A \equiv(X=x)$ and $B_{y} \equiv(Y=y)$. Then, Eq. 15 follows directly from Eq. 5.

Independence

Definition

We say that two events $A, B \in \mathfrak{A}$ are independent if the following holds:

$$
\begin{equation*}
P(A \cap B)=P(A) \cdot P(B) \tag{16}
\end{equation*}
$$

This implies that (if $P(B) \neq 0$):

$$
\begin{equation*}
P(A \mid B)=P(A) \tag{17}
\end{equation*}
$$

Intuitively, knowing B does not tell us anything about A and vice versa.

Definition

Let X, Y be two random variables. We say that X and Y are independent if for each possible value x of X and each possible value y of Y it holds that:

$$
\begin{equation*}
P(X=x \cap Y=y)=P(X=x) \cdot P(Y=y) \tag{18}
\end{equation*}
$$

Conditional Independence

Definition

Let $A, B, C \in \mathfrak{H}$ be three events. We say that A and B are (conditionally) independent given C if:

$$
\begin{equation*}
P(A \cap B \mid C)=P(A \mid C) \cdot P(B \mid C) \tag{19}
\end{equation*}
$$

This implies that (if $P(B \mid C) \neq 0$):

$$
\begin{equation*}
P(A \mid B \cap C)=P(A \mid C) \tag{20}
\end{equation*}
$$

Intuitively, knowing B does not tell us anything about A if we already know C. And vice versa, knowing A does not tell us anything about B if we already know C.

Question

Let's $A, B, C \in \mathfrak{A}$ be three events. Suppose we don't know anything about them. Which of the following two assumptions is stronger?

- A and B are independent
- A and B are independent given C

Conditional Independence

Example

Let's consider three events, on any particular day, all occurring in Düsseldorf:

- R - it is raining
- C - somebody has a car accident

■ U - Hans takes an umbrella on his way to work

Questions

Which of the following can be simplified/reduced and how?

- $P(C, U)$
- $P(C, R \mid U)$
- $P(C, U \mid R)$

You should adopt certain rational assumptions:

- Hans does not take umbrella on his way to work every day
- Hans does not use his umbrella to break the headlights of the cars passing by

Bayes' theorem

$$
\begin{equation*}
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{P(A \cap B)}{P(B)} \cdot \frac{P(B)}{P(A)}=\frac{P(A \mid B) \cdot P(B)}{P(A)} \tag{21}
\end{equation*}
$$

Bayes' theorem: example

Example

Suppose we know that we have a biased coin, with $h=0.4$. We throw the coin and get the following sequence:

$$
\begin{equation*}
H, T, T, T, H, H, T, H, T, H \tag{22}
\end{equation*}
$$

Thus, instead of getting H the expected 4 times, we got it 5 times.
We can calculate the probability of such an event happening:

$$
p(5)=\binom{10}{5} \times 0.4^{5} \times 0.6^{5}=0.201
$$

Suppose, however, that the coin is not biased. Then we get:

$$
p(5)=\binom{10}{5} \times 0.5^{5} \times 0.5^{5}=0.236
$$

Question

Let's assume that we know that the coin is either biased with $h=0.4$ or not biased at all $(h=0.5)$. What is the probability of the coin being biased if we throw 5 heads out of 10 ?

Bayes' theorem: example

Events

■ B - the coin is biased with $h=0.4$
■ N - the coin is not biased $(h=0.5)$
■ E - we get heads 5 times in 10 trials

Calculations

Let $\alpha:=P(B)$:

$$
\begin{gathered}
P(B \mid E)=P(E \mid B) \cdot \frac{P(B)}{P(E)}=0.201 \cdot \frac{\alpha}{P(E)} \\
P(E)=P(E \cap B)+P(E \cap N)=P(E \mid B) \cdot P(B)+P(E \mid N) \cdot P(N)= \\
0.201 \cdot \alpha+0.236 \cdot(1-\alpha)=0.236-0.035 \alpha
\end{gathered}
$$

Bayes' theorem: example

Events

■ B - the coin is biased with $h=0.4$
■ N - the coin is not biased $(h=0.5)$
■ E - we get heads 5 time

Result

$$
P(B \mid E)=0.201 \cdot \frac{\alpha}{0.236-0.035 \alpha}
$$

Prior

$P(B)=\alpha$ can be seen as a parameter representing our prior knowlege about the coin.
■ if $\alpha=0.5$, then $P(B \mid E)=0.46$
■ if $\alpha=0.6$, then $P(B \mid E)=0.56$
■ if $\alpha=0.0$, then $P(B \mid E)=0.0$
■ if $\alpha=1.0$, then $P(B \mid E)=1.0$

Bayes' theorem

General interpretation

Let α represent model parameters and D the observed event (data!). Then:

$$
\begin{equation*}
P(\alpha \mid D)=\frac{P(D \mid \alpha) \cdot P(\alpha)}{P(D)} \tag{23}
\end{equation*}
$$

where:

- $P(D \mid \alpha)$ - the so-called likelihood

■ $P(D)$ - the probability of D regardless of parameters (we can often ignore it!)

- $P(\alpha)$ - the prior

Estimation

■ Maximum likelihood esimates (MLE):

$$
\begin{equation*}
\arg \max _{\alpha} P(D \mid \alpha) \tag{24}
\end{equation*}
$$

■ Maximum a-posteriori esimates (MAP):

$$
\begin{equation*}
\arg \max _{\alpha} P(\alpha \mid D) \tag{25}
\end{equation*}
$$

