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Recap

Probability space
A probability space is a triple (2,2, P), where:
m ) is the sample space (the set of possible outcomes)
m A C p(Q) is the algebra of events
m P: A — [0, 1] is the function assigning probabilities to events

| N

Sum rule

P(AuB)=P(A)+ P(B) - P(ANnB) (1)

| A\

Conditional probability
P(AnNB)

P(AIB) = —5 1)

Product rule

| A\

P(AnB) = P(A|B)- P(B) (3)

v
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Today

m Random variables
m Independence

m Bayes’ theorem
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Partition

Special case

P(A) = P(ANB)+ P(ANnB) (4)

In general

Let B = B,..., B, be a sequence of mutually disjoint events such that UL, B; = Q. We
call it a partition. Then:

| A

P(A) = i P(ANnB) = Zn: P(A|B)P(B;) (5)

i=1
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Throwing coins

Proposition

Suppose you throw a coin n times and that the probability of getting heads is h. Then, the
probability of throwing heads k times is:

p(k) = (:) x b x (1 — h)@0) (6)

| N

Interpretation

m The probability of a sequence with k heads and n - k tails is h* x (1 — h)(")
m (,) is the number of distinct sequences with k heads and n - k tails
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andom Variables

Random Variables

What we assume

Let (2, %, P) be a probability space. For simplicity, we assume that it is discrete:

m A = p(Q) (all events and outcomes are possible)
m Function p : Q — [0, 1], p(x) = P({x})

V.

A random variable is a function X : Q — R which assignes a real value to every possible
outcome.

v

You roll a die in a casino. If you roll 6, you win 60$. Otherwise, you lose 10$. Is it worth it?
Let’s formalize this:

m Q={1,23,4,5,6}
m Random variable: X(w) = {

60 ifw=286
—-10 otherwise.

v
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andom Variables

Random Variables

Notation

A notation we will see frequently is P(X = x), for a given variable X and its possible value
x. What does it mean?

(X = x) denotes the set of outcomes (event) for which the value of the variable X is x:

{w:weQX(w)=x} (7)

Therefore:

PX=x)=Plw:weQX(w) =x)= > pw=>) pw)Xw)=x (@

weQ2:X(w)=x weN

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory Il Winter Semester 2018/19 7122



andom Variables

Expected Value

The expected value (or expectation) of X is defined as:

E(X) = erlmg(x) x-P(X = x) 9)

Equivalently:
B(X) = ), 0 X(@) P(®) (10)

Getting back to our casino example; assuming that the die is fair:

2
3

1 5
E(X)=60- =+ (-10)- = =1
(X) =602 +(-10) - 2
But if, for example, p(6) =

1.
8"

1 7
E(X) =60 -+ (-10)- = = —1.2
(X) =60 g +(-10)- ¢ 5

v
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andom Variables

Random Variables

The Law of Large Numbers

Suppose we have a probability space and a corresponding random variable X. Suppose
also that we randomly draw a given number of outcomes w; € Q2 from our space and store
the values X(w;) as results.

Then, according to the law of the large numbers, the mean of the obtained results is less
likely to deviate from the expected value E(X) as the number of iterations get larger.

| \

Corollary

In our casino example, if the dice is fair, the player will win, in the long run, 1 §$ per roll.

Or, if p(6) = 1, loose 1.25$ per roll.
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Variance and Standard Deviation

The variance of X measures the extent to which the actual values of the variable differ from
the expected one:

V(X) = E(X ~E(X))) = )

The standard deviation is defined as:

(X)(X—E(X))Z-P(sz) (11)

xelmg

a(X) = A[V(X) (12)

Getting back again to the casino and assuming that the die is fair:

2, 5
-10-12)%- = ~ 680
+( 3) 6

2., 1

o(X) = V680.5555555555 ~ 26

Intuitively, the expected gain of the player is therefore equal to 12 + 26.

4
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andom Variables

Example

Let’s change the rules of the game:
m As before: if you roll 6, you win 60%; otherwise, you lose 10$.
m The change: you have to roll the die 5 times, no more, no less.

v

Questions

m What is the expected gain of the player in this new version of the game?
m What is the variance and standard deviation of the gain?
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andom Variables

Random Variables

" XEY (X + ¥V)(®) = X(w) + V(o) (13)

m Xy (XY)(w) = X(w) - Y() (14)

v

Calculation toolkit

m if @ is a constant, then E(e) = «

if  is a constant, then V() =0

E(E(X)) = E(X)

E(X 4+ Y) =E(X) + E(Y)

if  is a constant, E(a - X) = « - E(X)

E(XY) = E(X) - E(Y), but only if X and Y are independent. (TRICKY TO PROVE)
E(X-EX)=0

V(X) = E(X?) - (E(X))?

m V(X +Y)=V(Y)+ V(Y), provided that X and Y are independent.

v
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andom Variables

Random Variables

Marginalization

m Suppose we have two random variables X, Y over the same probability space.

m Suppose that we also know the joint probability distribution of X and Y, that is, we
know P(X = x, Y = y) for any two values x, y of the random variables X, Y.

m Question: How can we determine P(X = x)?
P(X = x) = Zye.mgm P(X=x,Y=y) (15)

This process is called marginalization.

Proof (intuition)

m {Y=y:yelmg(Y)}is a partition of
m Let A = (X =x)and B, = (Y =y). Then, Eq. 15 follows directly from Eq. 5.
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Independence

Independence

Definition

We say that two events A, B € U are independent if the following holds:
P(AnB) = P(A)-P(B) (16)

This implies that (if P(B) # 0):
P(AIB) = P(A) (17)

Intuitively, knowing B does not tell us anything about A and vice versa.

Definition

| A

Let X, Y be two random variables. We say that X and Y are independent if for each
possible value x of X and each possible value y of Y it holds that:

PX=xnY=y)=PX=x)-P(Y=y) (18)
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Independence

Conditional Independence

Definition

Let A, B, C € U be three events. We say that A and B are (conditionally) independent
given C if:
P(A N B|C) = P(A|C) - P(BIC) (19)

This implies that (if P(B|C) # 0):

P(A|B N C) = P(AIC) (20)

Intuitively, knowing B does not tell us anything about A if we already know C. And vice
versa, knowing A does not tell us anything about B if we already know C.

Let's A, B, C € U be three events. Suppose we don’t know anything about them. Which of
the following two assumptions is stronger?

m A and B are independent
m A and B are independent given C
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Independence

Conditional Independence

Let’'s consider three events, on any particular day, all occurring in Disseldorf:

m R —itisraining
m C —somebody has a car accident
m U - Hans takes an umbrella on his way to work

v
Questions

Which of the following can be simplified/reduced and how?
m P(C,U)
m P(C,R|U)
m P(C,UR)
You should adopt certain rational assumptions:
m Hans does not take umbrella on his way to work every day
m Hans does not use his umbrella to break the headlights of the cars passing by

v
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Bayes’ theorem

Bayes’ theorem

P(BNnA) P(AnB) P(AnB) P(B) P(AB)-P(B)

PEBA)=—p@y =~ "P@a) ~ PB) P& P@A)

(21)
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Bayes’ theorem

Bayes’ theorem: example

Example

Suppose we know that we have a biased coin, with h = 0.4. We throw the coin and get the
following sequence:
HT,T,T,HHTHTH (22)

Thus, instead of getting H the expected 4 times, we got it 5 times.
We can calculate the probability of such an event happening:

1
p(5) = (50)x045x065—0201
Suppose, however, that the coin is not biased. Then we get:

1
(5) ( )x 0.5° x 0.5° = 0.236

Question

°
I
=)
\
A

Let’s assume that we know that the coin is either biased with h = 0.4 or not biased at all
(h = 0.5). What is the probability of the coin being biased if we throw 5 heads out of 10?
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Bayes’ theorem

Bayes’ theorem: example

m B —the coin is biased with h = 0.4
m N —the coin is not biased (h = 0.5)
m E —we get heads 5 times in 10 trials

Let @ := P(B):
P(BIE) = P(EIB)- % — 0201 50

P(E) = P(EnB)+ P(EnN) = P(E|B)- P(B) + P(EIN) - P(N) =
0.201-a +0.236 - (1 — @) = 0.236 — 0.035«
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Bayes’ theorem

Bayes’ theorem: example

m B —the coin is biased with h = 0.4
m N —the coin is not biased (h = 0.5)
m E —we get heads 5 time

v

a
P(BIE) =0.201 - ————F——F7—
(BIE) =020 0.236 — 0.035a

v

P(B) = a can be seen as a parameter representing our prior knowlege about the coin.
m if @ = 0.5, then P(B|E) = 0.46
m if « = 0.6, then P(B|E) = 0.56
m if @ = 0.0, then P(BIE) = 0.0
m if @ = 1.0, then P(BIE) = 1.0

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory Il Winter Semester 2018/19 20/22



Bayes’ theorem

General interpretation

Let a represent model parameters and D the observed event (data!). Then:

_ P(Dla) - @) 2
P(a|D) (D) (23)
where:

m P(Dl|a) — the so-called likelihood

m P(D) — the probability of D regardless of parameters (we can often ignore it!)
m P(«) —the prior

v

m Maximum likelihood esimates (MLE):

arg max, P(D|e) (24)

m Maximum a-posteriori esimates (MAP):

arg max, P(a|D) (25)

v

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory Il Winter Semester 2018/19 21/22




	Random Variables
	Independence
	Bayes' theorem

