Statistical Machine Translation
Probability Theory |

Jakub Waszczuk

Heinrich Heine Universitat Diisseldorf

Winter Semester 2018/19

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory | Winter Semester 2018/19 1/29



Today

Our goals for today:
m Motivations and intuitions behind probability theory

m Probability space: definition, some examples
m Basic calculation rules:

m Sum rule

m Product rule
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Example (following E. T. Janyes)

Let’s consider the following situation:

Some dark night a policeman walks down a street, apparently deserted. Suddenly
he hears a burglar alarm, looks across the street, and sees a jewelry store with a
broken window. Then a gentleman wearing a mask comes crawling out through
the broken window, carrying a bag which turns out to be full of expensive jewelry.
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Some dark night a policeman walks down a street, apparently deserted. Suddenly
he hears a burglar alarm, looks across the street, and sees a jewelry store with a
broken window. Then a gentleman wearing a mask comes crawling out through
the broken window, carrying a bag which turns out to be full of expensive jewelry.
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Example (following E. T. Janyes)

Let’s consider the following situation:

Some dark night a policeman walks down a street, apparently deserted. Suddenly
he hears a burglar alarm, looks across the street, and sees a jewelry store with a
broken window. Then a gentleman wearing a mask comes crawling out through
the broken window, carrying a bag which turns out to be full of expensive jewelry.

Question: is the gentleman wearing a mask dishonest? Hints:

m Street deserted m The gentleman crawls out from the
m In the dark of night jewelry store

m Burglar alarm goes off m With a bag full of jewelry

m Broken window m He wears a mask
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Example (following E. T. Janyes)

Is this a logical conclusion?

street deserted A in the dark of night A burglar alarm goes off A
broken window A gentleman crawls out from the jewelry store A
with a bag full of jewelry A he wears a mask

the gentelement with the mask is dishonest
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Example (following E. T. Janyes)

Is this a logical conclusion?
street deserted A in the dark of night A burglar alarm goes off A
broken window A gentleman crawls out from the jewelry store A

with a bag full of jewelry A he wears a mask

the gentelement with the mask is dishonest

There is a trace of doubit...

It might be that this gentleman was the owner of the jewelry store and he was
coming home from a masquerade party, and didn’t have the key with him. However,
just as he walked by his store, a passing truck threw a stone through the window,

and he was only protecting his own property.
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Deductive vs plausible reasoning

Plausible reasoning

We would rather want to determine the plausibility of the conclusion:

P(the gentelement with the mask is dishonest |

street deserted A in the dark of night A burglar alarm goes off A
broken window A gentleman crawls out from the jewelry store A

with a bag full of jewelry A he wears a mask)
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Deductive vs plausible reasoning

Plausible reasoning

We would rather want to determine the plausibility of the conclusion:

P(the gentelement with the mask is dishonest |

street deserted A in the dark of night A burglar alarm goes off A
broken window A gentleman crawls out from the jewelry store A

with a bag full of jewelry A he wears a mask)

| \

Desiderata
A theory of plausible/rational reasoning:
Events: A,B,C,D,E,...
Function P which describes the plausibility of events

]
]

m Language for describing complex events: A, V,—, = ...

m Numerical interpretation of the operators: P(A A B) = ..., P(-A) =..., etc.
u

This theory should follow some basic intuitions on rational reasoning.

v
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Home-baked theory of rational reasoning

Proposition

Probability P(A) of an event A is within the range of [0, 1], with the following interpretation:
0 = impossibility
1 = certainty

graded scale between impossible and certain
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Home-baked theory of rational reasoning

Some desirable properties

P(A or B) = P(Bor A) (1)
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Home-baked theory of rational reasoning

Some desirable properties

P(A or B) = P(Bor A) (1)

P(A and B) = P(B and A) @)

P(A) < P(A or B) ©)

P(B) < P(A or B) 4)

P(A and B) < P(A) (5)
(6) |
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Home-baked theory of rational reasoning

Some desirable properties

P(A or B) = P(Bor A) (1)
P(A and B) = P(B and A) @)
P(A) < P(A or B) ©)
P(B) < P(A or B) 4)
P(A and B) < P(A) (5)

—

(22)

-
A,

Notation
Instead of using A and V for conjunction and disjunction of events, we will now use:
m N for conjunction (A N B = A occurs and B occurs)

m U for disjunction (A U B = A occurs or B occurs)

v
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Home-baked theory of rational reasoning

Definition

Let L be an event that is completely impossible, i.e., P(L) = 0.
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Home-baked theory of rational reasoning

Definition

Let L be an event that is completely impossible, i.e., P(L) = 0.

If you roll a 6-numbered dice, it lands on neither 1, 2, ..., nor 6.
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Home-baked theory of rational reasoning

Definition

Let L be an event that is completely impossible, i.e., P(L) = 0.

If you roll a 6-numbered dice, it lands on neither 1, 2, ..., nor 6.

Proposition

Then:

P(AnL1)=P(L)=0 (7)
P(AuU 1) =P(A) (8)

In words: L is an absorbing element of conjunction of and neutral element of disjunction.
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Home-baked theory of rational reasoning

Definition

Conversely, let T be an event that is 100% probable, i.e., P(T) = 1.
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Home-baked theory of rational reasoning

Definition

Conversely, let T be an event that is 100% probable, i.e., P(T) = 1.

Example: if you through a 6-numbered dice, it gives a number between 1 and 6. l
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Home-baked theory of rational reasoning

Definition

Conversely, let T be an event that is 100% probable, i.e., P(T) = 1.

Example: if you through a 6-numbered dice, it gives a number between 1 and 6. I

Proposition

Then:

P(ANnT)=P(A) 9)
P(AUT)=P(T) =1 (10)

In words: L is a neutral element of conjunction and absorbing element of disjunction.
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Home-baked theory of rational reasoning

The operations which follow the laws we devised are + for U and x for N:

P(AUB) = P(A) + P(B) > P(A)
P(ANB) = P(A)x P(B) < P(A)
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Home-baked theory of rational reasoning

The operations which follow the laws we devised are + for U and x for N:

P(AuB) = P(A)+ P(B) = P(A)
P(ANnB)=P(A)x P(B) < P(A)

P(ANL1)=P(A)x P(L) = P(A)x0=0
P(AU 1) = P(A) + P(L) = P(A) 4+ 0 = P(A)
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Home-baked theory of rational reasoning

The operations which follow the laws we devised are + for U and x for N:

P(AuB) = P(A)+ P(B) = P(A)
P(ANnB)=P(A)x P(B) < P(A)

P(An1)=P(A)x P(L) = P(A)x0 =0
P(AU L) = P(A) + P(L) = P(A) + 0 = P(A)

P(ANT)=P(A)x P(T)=P(A)x1=P(A)
P(AUT)=P(A)+P(T)=P(A)+1=1
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Home-baked theory of rational reasoning

The operations which follow the laws we devised are + for U and x for N:

P(AuB) = P(A)+ P(B) = P(A)
P(ANnB)=P(A)x P(B) < P(A)

P(An1)=P(A)x P(L) = P(A)x0 =0
P(AU L) = P(A) + P(L) = P(A) + 0 = P(A)

P(ANT)=P(A)x P(T)=P(A)x1=P(A)
P(AUT)=P(A)+P(T)=P(A)+1=1

Not really.
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Home-baked theory of rational reasoning

Other problems
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Home-baked theory of rational reasoning

Other problems

P(ANA) =P(A) # P(A) x P(A)
P(AUA) = P(A) # P(A) + P(A)

Notes

| A

m Conjunction and disjunction are idempotent—AUA =AandANnA=A
m Multiplication and addition are not idempotent
m The matter is more complex than it seemed...

m Fortunatelly, there is a wonderfully elegant solution satisfies all the necessary laws
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Boolean algebra

Definition

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
if A € A, then also A € A, where A = M\ A
ifA,Be A thenalsoAuBeA
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Boolean algebra

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
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v

What about A N B?
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Boolean algebra

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
if A € A, then also A € A, where A = M\ A
ifA,Be A, thenalso AUBecA

v

What about A N B?

From definition, if A, B € A, then AU B € A
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Boolean algebra

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
if A € A, then also A € A, where A = M\ A
ifA,BeA, thenalsoAUBeA

v

What about A N B?

From definition, if A, B € A, then AU B € A
ANB=AUB

B
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Boolean algebra

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
if A € A, then also A € A, where A := M\ A
ifA,BeA, thenalsoAUBeA

Definition

What about A N B?

From definition, if A, B € A, then AU B € A
ANB=AUB
B

|
c
os]
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Boolean algebra

Definition

Let M be a set. We say that A C p(M) is a Boolean algebra over M if:
MeADeA
if A € A, then also A € A, where A := M\ A
ifA,Be A, thenalso AUBecA

What about A N B?

From definition, if A, B € A, then AU B € A
ANB=AUB
B
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Boolean algebra

Why should we care?

m Boolean algebras generalize both set and logic operations:
Hu=v
N=A
- = complement (A)

m They capture the essential properties of set and logical operations:
H AuUB=BUA, AnB=BnA

A=A
ANn(BuC)=(AnB)U(ANC)
AUB=ANB, AnB=AUB

m This gives us a language with desirable properties, which allows us to describe
complex probabilistic events.
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Boolean algebra: exercise

Let M ={1,2,3,4,5,6} be the set of possible outcomes of rolling a dice.

m Assuming that every outcome is possible, determine the corresponding Boolean
algebra of events A.

m |s it possible to construct another Boolean alebra for M?
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Probability space

Definition

A probability space is a triple (2,2, P), where A C () is a Boolean algebra (which
represents the possible events), and P : A — [0, 1] is a probability function such that:
P(Q)=1;
P(0) =0, and

if A1, Aq, ..., A, is a sequence of pairwise disjoint sets (mutually exclusive events), then:

P(OA:‘):ZH:P(A«') (11)
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Probability space

Definition

A probability space is a triple (2,2, P), where A C () is a Boolean algebra (which
represents the possible events), and P : A — [0, 1] is a probability function such that:

P(Q)=1;
P(0) =0, and
if Ay, Aq, ..., A, is a sequence of pairwise disjoint sets (mutually exclusive events), then:

P(OA:‘):ZH:P(A«') (11)

Note that (3) implies that for two given A, B € A such that AN B = 0:

P(AUB) = P(A) + P(B) (12)
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|
Probability space

Definition
A probability space is a triple (2,2, P), where A C () is a Boolean algebra (which
represents the possible events), and P : A — [0, 1] is a probability function such that:

P(Q)=1;
P(0) =0, and
if A1, Aq, ..., A, is a sequence of pairwise disjoint sets (mutually exclusive events), then:

P(JA) =) P(A) (1)
i=1 i=1
Note that (3) implies that for two given A, B € A such that AN B = 0:

P(AUB) = P(A) + P(B) (12)

Note

Note one of the roles of the Boolean algebra: if A, B C Q2 are events (to which probabilities
are assigned), than A U B (i.e., A or B occur), AN B (i.e., both A and B occur) and A (i.e.
A does not occur) are also events with assigned probabilities.

| N

v
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Probability spaces

Laplace

m The set of outcomes Q is finite
m Every outcome w € Q is possible and equally likely
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Probability spaces

Laplace
m The set of outcomes Q is finite
m Every outcome w € Q is possible and equally likely

1
p(w) = 9] (13)

Example

| \

An example is a fair cube (dice) with n sides:
m nis arbitrary, but must be finite (and > 0)

m Question: is each event equally likely?
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Probability spaces

Laplace
m The set of outcomes Q is finite
m Every outcome w € Q is possible and equally likely

1
p(w) = 9] (13)

| \

Example

An example is a fair cube (dice) with n sides:
m nis arbitrary, but must be finite (and > 0)
m Question: is each event equally likely?

| A\

Exercise
Suppose you roll two 6-faced dices.
m How does the event of getting 2 with the first dice look like?
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Probability spaces

Bernoulli

The probability space of the Bernoulli distribution has only two outcomes, 0 or 1:
m Q={0,1}
m A= p(Q) = {0,{0},{1},{0, 1}}
= p(1) =1-p(0)

The typical example is the event of coin tossing, with a possibly unfair coin (p(1) # p(0)).
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Probability spaces

Generalization of Laplace and Bernoulli:

m Q is finite
m A = p(Q), i.e., every conceivable event has a probability

Example
Suppose you throw a coin n times and that the probability of getting heads is h. What is the
probability of throwing heads k times?

m Q={0,1,...,N}

m The probability of throwing heads k times:

p(K) = h* x (1 = h)K) x (:) (14)
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Exercise

Setup
m Hans has three children
m The probability of having a boy is }

Answer the question:

m What'’s the probability that Hans has exactly one boy?
To this end:

m Determine the underlying probability space.

m Determine the event of Hans having exactly one boy.
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Calculation rules

We now proceed to determine the calculation rules for the operators which allow us to build
complex event exressions:

m complement (A)

m U
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Calculation rules

Complement

P(A) =1-P(A) (15)
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Calculation rules

Complement

P(A)=1-P(A) (15)

Venn diagram: P(A)
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Complement
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Venn diagram: P(A)
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Calculation rules

Complement

P(A) =1-P(A) (15)

Derivation

| N

P(AUA) =P(Q) =1, and
ANA=0
Therefore:
1=P(AUA)
= P(A) + P(A)
& P(A)=1-P(A)
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Calculation rules

The sum rule allows us to interpret the logical disjunction arithmetically:

P(AuB) = P(A)+P(B)-P(ANB) (16)

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory | Winter Semester 2018/19 22/29



Calculation rules

The sum rule allows us to interpret the logical disjunction arithmetically:

P(AuB) = P(A)+P(B)-P(ANB) (16)

This is harder to derive... but still follows directly from the set theory and probability axioms.
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Calculation rules

Sum rule

The sum rule allows us to interpret the logical disjunction arithmetically:
P(AuB)=P(A)+ P(B)-P(ANB) (16)

This is harder to derive... but still follows directly from the set theory and probability axioms.

Venn diagram

v
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Calculation rules

Deriving the sum rule (for the record)
Using Venn diagrams, it’s easy to verify that:

AUB=AU(B\A)
B\A=B\(ANB)
B=B\(ANB)U(ANB)
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Calculation rules

Deriving the sum rule (for the record)

Using Venn diagrams, it’s easy to verify that:
AUB=AU(B\A) (17)
B\A=B\(AnNB) (18)
B=B\(ANnB)U(ANB) (19)
From which follow:
P(AUB) = P(A) + P(B\ (AN B)) (via Eq. 17,18)
P(B) = P(B\ (AN B)) + P(A N B) (via Eq. 19)
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Calculation rules

Deriving the sum rule (for the record)

Using Venn diagrams, it's easy to verify that:
AUB=AU(B\A) (17)
B\A=B\(AnNB) (18)
B=B\(AnB)U(ANB) (19)
From which follow:
P(AuB)=P(A)+ P(B\(ANB)) (via Eq. 17,18)
P(B)=P(B\(ANB))+ P(ANB) (via Eq. 19)
Eliminating P(B \ (A n B)) from both equations above gives the sum rule.
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Conditional probability: intuition

m Hans has three children

m The probability of having a boy is 3
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Conditional probability: intuition

m Hans has three children

m The probability of having a boy is 3

Update
m Suppose we know, that Hans has a daugher.
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Conditional probability: intuition

m Hans has three children
m The probability of having a boy is 3

Update
m Suppose we know, that Hans has a daugher.
m What is the probability that he has exactly one son in this case? l
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Conditional probability: intuition

Proposition
Let:
m (Q,%, P) be a probability space
m C € U be the event that we know has occurred
We design a modified probability space (Q2c, ¢, Pc) as follows:
m Q¢ = C (Q restricted to outcomes consistent with C)
m % C p(C)
m Pc = P|¢ (P with domain restricted to C)
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Conditional probability: intuition

Proposition
Let:
m (Q,%, P) be a probability space

m C € U be the event that we know has occurred
We design a modified probability space (Q2c, ¢, Pc) as follows:
m Q¢ = C (Q restricted to outcomes consistent with C)
m % C p(C)
m Pc = P|¢ (P with domain restricted to C)

Pc(Q2¢) # 1
The underlying sample space and algebra of events are changed

The new probability does not tell us anything about events partially out of C
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Conditional probability: derivation

| Pc(C) =
m if A C C,then Po(A) =
m if AC C,then Pc(A) =
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Conditional probability: derivation

| Pc(C) =1
m if A C C,then Po(A) =
m if AC C,then Pc(A) =
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Conditional probability: derivation

| ] Pc(C) =1
m if AC C,then Pc(A) =0
m if A C C, then Pc(A) =
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Conditional probability: derivation

| Pc(C) =1
m if AC C,then Pc(A) =0
m if AC C,then Pc(A) =«

P(A), where « is a normalization constant
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Conditional probability: derivation

Assumptions
m Pc(C) =1
m if AC C,then Pc(A) =0
m if AC C,then Pc(A) =«

P(A), where « is a normalization constant

Derivation

IfACCuUC: C

Pc(A) = Pc((ANnC)U (ANTC))
=P:(ANC)+Ps(ANC)
=Pc;(ANC)=aP(ANC)

Ol
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Conditional probability: derivation

Assumptions
| Pc(C) =1
m if AC C,then Pc(A) =0
[07

m if A C C, then Pc(A) = aP(A), where a is a normalization constant

Derivation

fACCUC: C
Pc(A) = Pc((ANnC)U (ANTC))
=Pc(ANC)+Pe(ANC)
=Pc;(ANC)=aP(ANC)

Ol

Therefore:

Pd@zaﬂCﬂ@zaHC%:1::a:E%5
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Conditional probability: derivation

Assumptions
| Pc(C) =1
m if A C C, then Po(A)

=0
m if AC C,then Pc(A) =«

P(A), where « is a normalization constant

Derivation

fACCUC: C
Pc(A) = Pc((ANnC)U (ANTC))
=Pc(ANC)+Pe(ANC)
=Pc;(ANC)=aP(ANC)

Ol

Therefore:
Pc(C)=aP(CNC)=aP(C)=1 = a=
Finally: P(A A C)
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Conditional probability: definition

We denote with P(A|C) the probability of event A € 2 in a context where we now that C € A
has occurred.

Definition

The conditional probability of A|C is defined as:

P(ANC)

P(AIC) = P(C)
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Product rule

P(ANB) .
P(B) -

P(A N B) = P(A|B)P(B) (20)

The product rule stems directly from the conditional probability P(A|B) =
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Product rule

Definition

The product rule stems directly from the conditional probability P(A|B) = Pﬁ,‘zgf) :

P(A nB) = P(AIB)P(B) (20)

Since N is commutative (AN B = BN A), it also holds that:

P(ANB)=P(BNA)=P(BIA)P(A) 1)
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Recap

m Probability theory can be seen as a theory of rational reasoning

m In this theory, events are modeled with a Boolean algebra, which:

m Comprises operators (U, N, etc.) for defining complex events
m Satisfies the intuitive laws of rational reasoning (e.g., P(A) < (A U B))

m The probability itself is modeled as a function from events to [0, 1]

m In case of complex events, it can be calculated based on:

P(AUB) = P(A) + P(B) - P(A N B)
P(A N B) = P(A|B)P(B)
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