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Today

Our goals for today:

Motivations and intuitions behind probability theory

Probability space: definition, some examples

Basic calculation rules:

Sum rule

Product rule
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Example (following E. T. Janyes)

Let’s consider the following situation:

Some dark night a policeman walks down a street, apparently deserted. Suddenly
he hears a burglar alarm, looks across the street, and sees a jewelry store with a
broken window. Then a gentleman wearing a mask comes crawling out through
the broken window, carrying a bag which turns out to be full of expensive jewelry.

Question: is the gentleman wearing a mask dishonest? Hints:

Street deserted

In the dark of night

Burglar alarm goes off

Broken window

The gentleman crawls out from the
jewelry store

With a bag full of jewelry

He wears a mask
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Example (following E. T. Janyes)

Is this a logical conclusion?

street deserted ∧ in the dark of night ∧ burglar alarm goes off ∧

broken window ∧ gentleman crawls out from the jewelry store ∧

with a bag full of jewelry ∧ he wears a mask

...

the gentelement with the mask is dishonest

There is a trace of doubt...

It might be that this gentleman was the owner of the jewelry store and he was
coming home from a masquerade party, and didn’t have the key with him. However,
just as he walked by his store, a passing truck threw a stone through the window,
and he was only protecting his own property.

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory I Winter Semester 2018/19 4 / 29



Example (following E. T. Janyes)

Is this a logical conclusion?

street deserted ∧ in the dark of night ∧ burglar alarm goes off ∧

broken window ∧ gentleman crawls out from the jewelry store ∧

with a bag full of jewelry ∧ he wears a mask

...

the gentelement with the mask is dishonest

There is a trace of doubt...

It might be that this gentleman was the owner of the jewelry store and he was
coming home from a masquerade party, and didn’t have the key with him. However,
just as he walked by his store, a passing truck threw a stone through the window,
and he was only protecting his own property.

Jakub Waszczuk (HHU) Statistical Machine Translation Probability Theory I Winter Semester 2018/19 4 / 29



Deductive vs plausible reasoning

Plausible reasoning

We would rather want to determine the plausibility of the conclusion:

P
(
the gentelement with the mask is dishonest

∣∣∣
street deserted ∧ in the dark of night ∧ burglar alarm goes off ∧

broken window ∧ gentleman crawls out from the jewelry store ∧

with a bag full of jewelry ∧ he wears a mask
)

Desiderata

A theory of plausible/rational reasoning:

Events: A ,B ,C ,D,E, . . .

Function P which describes the plausibility of events

Language for describing complex events: ∧,∨,¬, =⇒ , . . .

Numerical interpretation of the operators: P(A ∧ B) = . . ., P(¬A) = . . ., etc.

This theory should follow some basic intuitions on rational reasoning.
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Home-baked theory of rational reasoning

Proposition

Probability P(A) of an event A is within the range of [0, 1], with the following interpretation:

1 0 � impossibility

2 1 � certainty

3 graded scale between impossible and certain
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Home-baked theory of rational reasoning

Some desirable properties

P(A or B) = P(B or A) (1)

P(A and B) = P(B and A) (2)

P(A) ≤ P(A or B) (3)

P(B) ≤ P(A or B) (4)

P(A and B) ≤ P(A) (5)

. . . (6)

Notation

Instead of using ∧ and ∨ for conjunction and disjunction of events, we will now use:

∩ for conjunction (A ∩ B ≡ A occurs and B occurs)

∪ for disjunction (A ∪ B ≡ A occurs or B occurs)
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Home-baked theory of rational reasoning

Definition

Let ⊥ be an event that is completely impossible, i.e., P(⊥) = 0.

Example

If you roll a 6-numbered dice, it lands on neither 1, 2, . . . , nor 6.

Proposition

Then:

P(A ∩ ⊥) = P(⊥) = 0 (7)

P(A ∪ ⊥) = P(A) (8)

In words: ⊥ is an absorbing element of conjunction of and neutral element of disjunction.
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Home-baked theory of rational reasoning

Definition

Conversely, let > be an event that is 100% probable, i.e., P(>) = 1.

Example

Example: if you through a 6-numbered dice, it gives a number between 1 and 6.

Proposition

Then:

P(A ∩ >) = P(A) (9)

P(A ∪ >) = P(>) = 1 (10)

In words: ⊥ is a neutral element of conjunction and absorbing element of disjunction.
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Home-baked theory of rational reasoning

The operations which follow the laws we devised are + for ∪ and × for ∩:

P(A ∪ B) = P(A) + P(B) ≥ P(A)

P(A ∩ B) = P(A) × P(B) ≤ P(A)

P(A ∩ ⊥) = P(A) × P(⊥) = P(A) × 0 = 0

P(A ∪ ⊥) = P(A) + P(⊥) = P(A) + 0 = P(A)

P(A ∩ >) = P(A) × P(>) = P(A) × 1 = P(A)

P(A ∪ >) = P(A) + P(>) = P(A) + 1 = 1

Not really.
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Home-baked theory of rational reasoning

Other problems

P(A ∩ A) = P(A) , P(A) × P(A)

P(A ∪ A) = P(A) , P(A) + P(A)

Notes

Conjunction and disjunction are idempotent – A ∪ A = A and A ∩ A = A

Multiplication and addition are not idempotent

The matter is more complex than it seemed...

Fortunatelly, there is a wonderfully elegant solution satisfies all the necessary laws
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Boolean algebra

Definition

Let M be a set. We say that A ⊆ ℘(M) is a Boolean algebra over M if:

1 M ∈ A, ∅ ∈ A

2 if A ∈ A, then also A ∈ A, where A B M \ A

3 if A ,B ∈ A, then also A ∪ B ∈ A

What about A ∩ B?

1 From definition, if A ,B ∈ A, then A ∪ B ∈ A

2 A ∩ B = A ∪ B
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Boolean algebra

Why should we care?

Boolean algebras generalize both set and logic operations:

1 ∪ ≡ ∨

2 ∩ ≡ ∧

3 ¬ ≡ complement (A )

They capture the essential properties of set and logical operations:

1 A ∪ B = B ∪ A , A ∩ B = B ∩ A

2 A = A

3 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

4 A ∪ B = A ∩ B, A ∩ B = A ∪ B

5 . . .

This gives us a language with desirable properties, which allows us to describe
complex probabilistic events.
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Boolean algebra: exercise

Dice

Let M = {1, 2, 3, 4, 5, 6} be the set of possible outcomes of rolling a dice.

Tasks

Assuming that every outcome is possible, determine the corresponding Boolean
algebra of events A.

Is it possible to construct another Boolean alebra for M?
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Probability space

Definition

A probability space is a triple (Ω,A,P), where A ⊆ ℘(Ω) is a Boolean algebra (which
represents the possible events), and P : A→ [0, 1] is a probability function such that:

1 P(Ω) = 1;

2 P(∅) = 0, and

3 if A1,A2, ...,An is a sequence of pairwise disjoint sets (mutually exclusive events), then:

P(
n⋃

i=1

Ai) =
n∑

i=1

P(Ai) (11)

Note that (3) implies that for two given A ,B ∈ A such that A ∩ B = ∅:

P(A ∪ B) = P(A) + P(B) (12)

Note

Note one of the roles of the Boolean algebra: if A ,B ⊆ Ω are events (to which probabilities
are assigned), than A ∪ B (i.e., A or B occur), A ∩ B (i.e., both A and B occur) and A (i.e.
A does not occur) are also events with assigned probabilities.
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Probability spaces

Laplace

The set of outcomes Ω is finite

Every outcome ω ∈ Ω is possible and equally likely

p(ω) =
1
|Ω|

(13)

Example

An example is a fair cube (dice) with n sides:

n is arbitrary, but must be finite (and > 0)

Question: is each event equally likely?

Exercise

Suppose you roll two 6-faced dices.

How does the event of getting 2 with the first dice look like?
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Probability spaces

Bernoulli

The probability space of the Bernoulli distribution has only two outcomes, 0 or 1:

Ω = {0, 1}

A = ℘(Ω) = {∅, {0}, {1}, {0, 1}}

p(1) = 1 − p(0)

Example

The typical example is the event of coin tossing, with a possibly unfair coin (p(1) , p(0)).
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Probability spaces

Discrete

Generalization of Laplace and Bernoulli:

Ω is finite

A = ℘(Ω), i.e., every conceivable event has a probability

Example

Suppose you throw a coin n times and that the probability of getting heads is h. What is the
probability of throwing heads k times?

Ω = {0, 1, . . . ,N}

The probability of throwing heads k times:

p(k) = hk × (1 − h)(n−k) ×

(
n
k

)
(14)
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Exercise

Setup

Hans has three children

The probability of having a boy is 1
2

Task

Answer the question:

What’s the probability that Hans has exactly one boy?

To this end:

Determine the underlying probability space.

Determine the event of Hans having exactly one boy.
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Calculation rules

We now proceed to determine the calculation rules for the operators which allow us to build
complex event exressions:

complement (A )

∪

∩
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Calculation rules

Complement

P(A) = 1 − P(A) (15)
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Calculation rules

Complement

P(A) = 1 − P(A) (15)

Derivation

P(A ∪ A) = P(Ω) = 1, and

A ∩ A = ∅

Therefore:

1 = P(A ∪ A)

= P(A) + P(A)

⇐⇒ P(A) = 1 − P(A)
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Calculation rules

Sum rule

The sum rule allows us to interpret the logical disjunction arithmetically:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (16)

This is harder to derive... but still follows directly from the set theory and probability axioms.

Venn diagram
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Calculation rules

Deriving the sum rule (for the record)

Using Venn diagrams, it’s easy to verify that:

A ∪ B = A ∪̇ (B \ A) (17)

B \ A = B \ (A ∩ B) (18)

B = B \ (A ∩ B) ∪̇ (A ∩ B) (19)

From which follow:

P(A ∪ B) = P(A) + P(B \ (A ∩ B)) (via Eq. 17, 18)

P(B) = P(B \ (A ∩ B)) + P(A ∩ B) (via Eq. 19)

Eliminating P(B \ (A ∩ B)) from both equations above gives the sum rule.
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Conditional probability: intuition

Setup

Hans has three children

The probability of having a boy is 1
2

Update

Suppose we know, that Hans has a daugher.

Question

What is the probability that he has exactly one son in this case?
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Conditional probability: intuition

Proposition

Let:

(Ω,A,P) be a probability space

C ∈ A be the event that we know has occurred

We design a modified probability space (ΩC ,AC ,PC ) as follows:

ΩC = C (Ω restricted to outcomes consistent with C)

AC ⊆ ℘(C)

PC = P |C (P with domain restricted to C)

Issues

PC (ΩC ) , 1

The underlying sample space and algebra of events are changed

The new probability does not tell us anything about events partially out of C
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Conditional probability: derivation

Assumptions

PC (C) =

if A ⊆ C, then PC (A) =

if A ⊆ C, then PC (A) =

Derivation

If A ⊆ C ∪ C:

PC (A) = PC ((A ∩ C) ∪ (A ∩ C))

= PC (A ∩ C) + PC (A ∩ C)

= PC (A ∩ C) = αP(A ∩ C)

Therefore:

PC (C) = αP(C ∩ C) = αP(C) = 1 =⇒ α =
1

P(C)

Finally:
PC (A) =

P(A ∩ C)

P(C)
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Conditional probability: definition

Notation

We denote with P(A |C) the probability of event A ∈ A in a context where we now that C ∈ A
has occurred.

Definition

The conditional probability of A |C is defined as:

P(A |C) =
P(A ∩ C)

P(C)
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Product rule

Definition

The product rule stems directly from the conditional probability P(A |B) =
P(A∩B)

P(B)
:

P(A ∩ B) = P(A |B)P(B) (20)

Since ∩ is commutative (A ∩ B = B ∩ A), it also holds that:

P(A ∩ B) = P(B ∩ A) = P(B |A)P(A) (21)
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Recap

Probability theory can be seen as a theory of rational reasoning

In this theory, events are modeled with a Boolean algebra, which:

Comprises operators (∪, ∩, etc.) for defining complex events

Satisfies the intuitive laws of rational reasoning (e.g., P(A) ≤ (A ∪ B))

The probability itself is modeled as a function from events to [0, 1]

In case of complex events, it can be calculated based on:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

P(A ∩ B) = P(A |B)P(B)
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