Statistical Machine Translation Probability Theory I Jakub Waszczuk Heinrich Heine Universität Düsseldorf Winter Semester 2018/19 # Today ### Our goals for today: - Motivations and intuitions behind probability theory - Probability space: definition, some examples - Basic calculation rules: - Sum rule - Product rule #### Let's consider the following situation: Some dark night a policeman walks down a street, apparently deserted. Suddenly he hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which turns out to be full of expensive jewelry. Let's consider the following situation: Some dark night a policeman walks down a street, apparently deserted. Suddenly he hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which turns out to be full of expensive jewelry. Question: is the gentleman wearing a mask dishonest? #### Let's consider the following situation: Some dark night a policeman walks down a street, apparently deserted. Suddenly he hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which turns out to be full of expensive jewelry. #### Question: is the gentleman wearing a mask dishonest? Hints: - Street deserted - In the dark of night - Burglar alarm goes off - Broken window - The gentleman crawls out from the jewelry store - With a bag full of jewelry - He wears a mask Is this a logical conclusion? street deserted \land in the dark of night \land burglar alarm goes off \land broken window \land gentleman crawls out from the jewelry store \land with a bag full of jewelry \land he wears a mask : the gentelement with the mask is dishonest Is this a logical conclusion? ``` street deserted \land in the dark of night \land burglar alarm goes off \land broken window \land gentleman crawls out from the jewelry store \land with a bag full of jewelry \land he wears a mask ``` : the gentelement with the mask is dishonest There is a trace of doubt... It might be that this gentleman was the owner of the jewelry store and he was coming home from a masquerade party, and didn't have the key with him. However, just as he walked by his store, a passing truck threw a stone through the window, and he was only protecting his own property. ### Deductive vs plausible reasoning ### Plausible reasoning We would rather want to determine the *plausibility* of the conclusion: P(the gentelement with the mask is dishonest \mid street deserted \land in the dark of night \land burglar alarm goes off \land broken window \land gentleman crawls out from the jewelry store \land with a bag full of jewelry \land he wears a mask) # Deductive vs plausible reasoning ### Plausible reasoning We would rather want to determine the *plausibility* of the conclusion: P(the gentelement with the mask is dishonest | street deserted \wedge in the dark of night \wedge burglar alarm goes off \wedge broken window \land gentleman crawls out from the jewelry store \land with a bag full of jewelry \land he wears a mask) #### Desiderata A theory of plausible/rational reasoning: - Events: *A*, *B*, *C*, *D*, *E*, . . . - Function P which describes the plausibility of events - Language for describing complex events: ∧, ∨, ¬, ⇒ ,... - Numerical interpretation of the operators: $P(A \land B) = ..., P(\neg A) = ...,$ etc. - This theory should follow some basic intuitions on rational reasoning. ### Proposition Probability P(A) of an event A is within the range of [0,1], with the following interpretation: - 0 ≅ impossibility - 2 1 ≅ certainty - 3 graded scale between impossible and certain ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A)$$ (2) ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A)$$ (2) $$P(A) \le P(A \text{ or } B) \tag{3}$$ ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A) \tag{2}$$ $$P(A) \leq P(A \text{ or } B)$$ $$P(B) \le P(A \text{ or } B) \tag{4}$$ (3) ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A) \tag{2}$$ $$P(A) \leq P(A \text{ or } B)$$ $$P(B) \leq P(A \text{ or } B)$$ $$P(A \text{ and } B) \le P(A)$$ (5) (3) (4) ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A) \tag{2}$$ $$P(A) \leq P(A \text{ or } B)$$ $$P(B) \leq P(A \text{ or } B)$$ $$P(A \text{ and } B) \leq P(A)$$ (3) (4) (5) ### Some desirable properties $$P(A \text{ or } B) = P(B \text{ or } A) \tag{1}$$ $$P(A \text{ and } B) = P(B \text{ and } A) \tag{2}$$ $$P(A) \leq P(A \text{ or } B)$$ $$P(B) \leq P(A \text{ or } B)$$ $$P(A \text{ and } B) \leq P(A)$$. (6) #### Notation Instead of using \land and \lor for conjunction and disjunction of events, we will now use: - \blacksquare \cap for conjunction ($A \cap B \equiv A$ occurs and B occurs) - $lue{}$ \cup for disjunction ($A \cup B \equiv A$ occurs or B occurs) (3) (4) (5) ### Definition Let \bot be an event that is completely impossible, i.e., $P(\bot)=0$. ### Definition Let \perp be an event that is completely impossible, i.e., $P(\perp) = 0$. ### Example If you roll a 6-numbered dice, it lands on neither 1, 2, \dots , nor 6. #### Definition Let \perp be an event that is completely impossible, i.e., $P(\perp) = 0$. #### Example If you roll a 6-numbered dice, it lands on neither 1, 2, ..., nor 6. #### Proposition Then: $$P(A \cap \bot) = P(\bot) = 0 \tag{7}$$ $$P(A \cup \bot) = P(A) \tag{8}$$ In words: \bot is an absorbing element of conjunction of and neutral element of disjunction. ### Definition Conversely, let \top be an event that is 100% probable, i.e., $P(\top)=1$. #### Definition Conversely, let \top be an event that is 100% probable, i.e., $P(\top) = 1$. ### Example Example: if you through a 6-numbered dice, it gives a number between 1 and 6. #### **Definition** Conversely, let \top be an event that is 100% probable, i.e., $P(\top) = 1$. #### Example Example: if you through a 6-numbered dice, it gives a number between 1 and 6. ### **Proposition** Then: $$P(A \cap \top) = P(A) \tag{9}$$ $$P(A \cup \top) = P(\top) = 1 \tag{10}$$ In words: \bot is a neutral element of conjunction and absorbing element of disjunction. The operations which follow the laws we devised are + for \cup and \times for \cap : $$P(A \cup B) = P(A) + P(B) \ge P(A)$$ $$P(A \cap B) = P(A) \times P(B) \le P(A)$$ The operations which follow the laws we devised are + for \cup and \times for \cap : $$P(A \cup B) = P(A) + P(B) \ge P(A)$$ $$P(A \cap B) = P(A) \times P(B) \le P(A)$$ $$P(A \cap \bot) = P(A) \times P(\bot) = P(A) \times 0 = 0$$ $P(A \cup \bot) = P(A) + P(\bot) = P(A) + 0 = P(A)$ The operations which follow the laws we devised are + for \cup and \times for \cap : $$P(A \cup B) = P(A) + P(B) \ge P(A)$$ $$P(A \cap B) = P(A) \times P(B) \le P(A)$$ $$P(A \cap \bot) = P(A) \times P(\bot) = P(A) \times 0 = 0$$ $P(A \cup \bot) = P(A) + P(\bot) = P(A) + 0 = P(A)$ $$P(A \cap T) = P(A) \times P(T) = P(A) \times 1 = P(A)$$ $P(A \cup T) = P(A) + P(T) = P(A) + 1 = 1$ The operations which follow the laws we devised are + for \cup and \times for \cap : $$P(A \cup B) = P(A) + P(B) \ge P(A)$$ $$P(A \cap B) = P(A) \times P(B) \le P(A)$$ $$P(A \cap \bot) = P(A) \times P(\bot) = P(A) \times 0 = 0$$ $P(A \cup \bot) = P(A) + P(\bot) = P(A) + 0 = P(A)$ $$P(A \cap T) = P(A) \times P(T) = P(A) \times 1 = P(A)$$ $P(A \cup T) = P(A) + P(T) = P(A) + 1 = 1$ Not really. ### Other problems $$P(A \cap A) = P(A) \neq P(A) \times P(A)$$ $$P(A \cup A) = P(A) \neq P(A) + P(A)$$ ### Other problems $$P(A \cap A) = P(A) \neq P(A) \times P(A)$$ $$P(A \cup A) = P(A) \neq P(A) + P(A)$$ #### Notes - Conjunction and disjunction are idempotent $A \cup A = A$ and $A \cap A = A$ - Multiplication and addition are not idempotent - The matter is more complex than it seemed... - Fortunatelly, there is a wonderfully elegant solution satisfies all the necessary laws #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - $M \in \mathcal{A}, \emptyset \in \mathcal{A}$ - if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - **11** M ∈ \mathcal{A} , \emptyset ∈ \mathcal{A} - if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ #### What about $A \cap B$? #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - **11** M ∈ \mathcal{A} , \emptyset ∈ \mathcal{A} - **2** if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ #### What about $A \cap B$? **1** From definition, if $A, B \in \mathcal{A}$, then $\overline{A} \cup \overline{B} \in \mathcal{A}$ #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - **1** *M* ∈ \mathcal{A} , \emptyset ∈ \mathcal{A} - **2** if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ ### What about $A \cap B$? - **1** From definition, if $A, B \in \mathcal{A}$, then $\overline{A} \cup \overline{B} \in \mathcal{A}$ - $A \cap B = \overline{\overline{A} \cup \overline{B}}$ В #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - **1** M ∈ \mathcal{A} , \emptyset ∈ \mathcal{A} - **2** if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ ### What about $A \cap B$? - **1** From definition, if $A, B \in \mathcal{A}$, then $\overline{A} \cup \overline{B} \in \mathcal{A}$ - $A \cap B = \overline{\overline{A} \cup \overline{B}}$ #### Definition Let M be a set. We say that $\mathcal{A} \subseteq \wp(M)$ is a Boolean algebra over M if: - **1** *M* ∈ \mathcal{A} , \emptyset ∈ \mathcal{A} - **2** if $A \in \mathcal{A}$, then also $\overline{A} \in \mathcal{A}$, where $\overline{A} := M \setminus A$ - **3** if $A, B \in \mathcal{A}$, then also $A \cup B \in \mathcal{A}$ ### What about $A \cap B$? - **1** From definition, if $A, B \in \mathcal{A}$, then $\overline{A} \cup \overline{B} \in \mathcal{A}$ - $A \cap B = \overline{\overline{A} \cup \overline{B}}$ ### Why should we care? - Boolean algebras generalize both set and logic operations: - 1 U ≡ V - $\neg \equiv \text{complement } (\overline{A})$ - They capture the essential properties of set and logical operations: - $\overline{\overline{A}} = A$ - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ - $\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$ - 5 - This gives us a language with desirable properties, which allows us to describe complex probabilistic events. ## Boolean algebra: exercise #### Dice Let $M = \{1, 2, 3, 4, 5, 6\}$ be the set of possible outcomes of rolling a dice. #### **Tasks** - Assuming that every outcome is possible, determine the corresponding Boolean algebra of events A. - Is it possible to construct another Boolean alebra for *M*? #### Definition A probability space is a triple $(\Omega, \mathfrak{A}, P)$, where $\mathfrak{A} \subseteq \wp(\Omega)$ is a Boolean algebra (which represents the possible **events**), and $P : \mathfrak{A} \to [0,1]$ is a probability function such that: - $P(\Omega) = 1$; - **2** $P(\emptyset) = 0$, and - \blacksquare if $A_1, A_2, ..., A_n$ is a sequence of pairwise disjoint sets (mutually exclusive events), then: $$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$ (11) #### Definition A probability space is a triple $(\Omega, \mathfrak{A}, P)$, where $\mathfrak{A} \subseteq \wp(\Omega)$ is a Boolean algebra (which represents the possible **events**), and $P : \mathfrak{A} \to [0,1]$ is a probability function such that: - $P(\Omega) = 1;$ - **2** $P(\emptyset) = 0$, and - 3 if $A_1, A_2, ..., A_n$ is a sequence of pairwise disjoint sets (mutually exclusive events), then: $$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$ (11) Note that (3) implies that for two given $A, B \in \mathfrak{A}$ such that $A \cap B = \emptyset$: $$P(A \cup B) = P(A) + P(B) \tag{12}$$ #### Definition A probability space is a triple $(\Omega, \mathfrak{A}, P)$, where $\mathfrak{A} \subseteq \wp(\Omega)$ is a Boolean algebra (which represents the possible **events**), and $P : \mathfrak{A} \to [0,1]$ is a probability function such that: - $P(\Omega) = 1$; - **2** $P(\emptyset) = 0$, and - \blacksquare if $A_1, A_2, ..., A_n$ is a sequence of pairwise disjoint sets (mutually exclusive events), then: $$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$ (11) Note that (3) implies that for two given $A, B \in \mathfrak{A}$ such that $A \cap B = \emptyset$: $$P(A \cup B) = P(A) + P(B) \tag{12}$$ #### Note Note one of the roles of the Boolean algebra: if $A, B \subseteq \Omega$ are events (to which probabilities are assigned), than $A \cup B$ (i.e., A or B occur), $A \cap B$ (i.e., both A and B occur) and \overline{A} (i.e. A does not occur) are also events with assigned probabilities. ### Laplace - The set of outcomes Ω is finite - **E**very outcome $\omega \in \Omega$ is possible and equally likely $$p(\omega) = \frac{1}{|\Omega|} \tag{13}$$ ### Laplace - The set of outcomes Ω is finite - Every outcome $\omega \in \Omega$ is possible and equally likely $$p(\omega) = \frac{1}{|\Omega|} \tag{13}$$ ## Example An example is a fair cube (dice) with *n* sides: - \blacksquare *n* is arbitrary, but must be finite (and > 0) - Question: is each event equally likely? #### Laplace - The set of outcomes Ω is finite - Every outcome $\omega \in \Omega$ is possible and equally likely $$p(\omega) = \frac{1}{|\Omega|} \tag{13}$$ #### Example An example is a fair cube (dice) with *n* sides: - \blacksquare *n* is arbitrary, but must be finite (and > 0) - Question: is each event equally likely? #### Exercise Suppose you roll two 6-faced dices. ■ How does the event of getting 2 with the first dice look like? #### Bernoulli The probability space of the Bernoulli distribution has only two outcomes, 0 or 1: - $\Omega = \{0, 1\}$ - p(1) = 1 p(0) ### Example The typical example is the event of coin tossing, with a possibly unfair coin $(p(1) \neq p(0))$. #### Discrete Generalization of Laplace and Bernoulli: - Ω is finite - $\mathbb{I} = \mathcal{Q}(\Omega)$, i.e., every conceivable event has a probability ### Example Suppose you throw a coin n times and that the probability of getting *heads* is h. What is the probability of throwing heads k times? - $\Omega = \{0, 1, ..., N\}$ - The probability of throwing heads *k* times: $$p(k) = h^k \times (1 - h)^{(n - k)} \times \binom{n}{k}$$ (14) #### Exercise ## Setup - Hans has three children - The probability of having a boy is $\frac{1}{2}$ #### Task Answer the question: ■ What's the probability that Hans has exactly one boy? To this end: - Determine the underlying probability space. - Determine the event of Hans having exactly one boy. We now proceed to determine the calculation rules for the operators which allow us to build complex event exressions: - \blacksquare complement (\overline{A}) - U - \blacksquare # Complement $$P(\overline{A}) = 1 - P(A) \tag{15}$$ # Complement $$P(\overline{A}) = 1 - P(A) \tag{15}$$ # Venn diagram: P(A) # Complement $$P(\overline{A}) = 1 - P(A) \tag{15}$$ # Venn diagram: $P(\overline{A})$ ## Complement $$P(\overline{A}) = 1 - P(A) \tag{15}$$ #### Derivation $$P(A \cup \overline{A}) = P(\Omega) = 1$$, and $A \cap \overline{A} = \emptyset$ Therefore: $$1 = P(A \cup \overline{A})$$ $$= P(A) + P(\overline{A})$$ $$\iff P(A) = 1 - P(\overline{A})$$ ### Sum rule The sum rule allows us to interpret the logical disjunction arithmetically: $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ (16) #### Sum rule The sum rule allows us to interpret the logical disjunction arithmetically: $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ (16) This is harder to derive... but still follows directly from the set theory and probability axioms. #### Sum rule The sum rule allows us to interpret the logical disjunction arithmetically: $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ (16) This is harder to derive... but still follows directly from the set theory and probability axioms. ### Venn diagram ### Deriving the sum rule (for the record) Using Venn diagrams, it's easy to verify that: $$A \cup B = A \dot{\cup} (B \setminus A) \tag{17}$$ $$B \setminus A = B \setminus (A \cap B) \tag{18}$$ $$B = B \setminus (A \cap B) \dot{\cup} (A \cap B) \tag{19}$$ #### Deriving the sum rule (for the record) Using Venn diagrams, it's easy to verify that: $$A \cup B = A \dot{\cup} (B \setminus A) \tag{17}$$ $$B \setminus A = B \setminus (A \cap B) \tag{18}$$ $$B = B \setminus (A \cap B) \dot{\cup} (A \cap B) \tag{19}$$ From which follow: $$P(A \cup B) = P(A) + P(B \setminus (A \cap B))$$ (via Eq. 17, 18) $$P(B) = P(B \setminus (A \cap B)) + P(A \cap B)$$ (via Eq. 19) #### Deriving the sum rule (for the record) Using Venn diagrams, it's easy to verify that: $$A \cup B = A \dot{\cup} (B \setminus A) \tag{17}$$ $$B \setminus A = B \setminus (A \cap B) \tag{18}$$ $$B = B \setminus (A \cap B) \dot{\cup} (A \cap B) \tag{19}$$ From which follow: $$P(A \cup B) = P(A) + P(B \setminus (A \cap B))$$ (via Eq. 17, 18) $$P(B) = P(B \setminus (A \cap B)) + P(A \cap B)$$ (via Eq. 19) Eliminating $P(B \setminus (A \cap B))$ from both equations above gives the sum rule. ### Setup - Hans has three children - The probability of having a boy is $\frac{1}{2}$ ## Setup - Hans has three children - The probability of having a boy is $\frac{1}{2}$ ### Update Suppose we know, that Hans has a daugher. ## Setup - Hans has three children - The probability of having a boy is $\frac{1}{2}$ ### Update Suppose we know, that Hans has a daugher. ### Question ■ What is the probability that he has exactly one son in this case? #### Proposition #### Let: - \blacksquare $(\Omega, \mathfrak{A}, P)$ be a probability space - $\mathbf{C} \in \mathfrak{A}$ be the event that we know has occurred We design a modified probability space $(\Omega_C, \mathfrak{A}_C, P_C)$ as follows: - lacktriangle $\Omega_C = C$ (Ω restricted to outcomes consistent with C) - $P_C = P|_C$ (P with domain restricted to C) #### Proposition #### Let: - \blacksquare $(\Omega, \mathfrak{A}, P)$ be a probability space - $\mathbf{C} \in \mathfrak{A}$ be the event that we know has occurred We design a modified probability space $(\Omega_C, \mathfrak{A}_C, P_C)$ as follows: - lacksquare $\Omega_{\mathcal{C}} = \mathcal{C}$ (Ω restricted to outcomes consistent with \mathcal{C}) - $Arr P_C = P|_C$ (P with domain restricted to C) #### Issues - $P_C(\Omega_C) \neq 1$ - The underlying sample space and algebra of events are changed - The new probability does not tell us anything about events partially out of C - $P_C(C) =$ - if $A \subseteq \overline{C}$, then $P_C(A) =$ - if $A \subseteq C$, then $P_C(A) =$ - $P_C(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) =$ - if $A \subseteq C$, then $P_C(A) =$ - $P_C(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) = 0$ - if $A \subseteq C$, then $P_C(A) =$ - $P_{C}(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) = 0$ - if $A \subseteq C$, then $P_C(A) = \alpha P(A)$, where α is a normalization constant ## **Assumptions** - $P_C(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) = 0$ - if $A \subseteq C$, then $P_C(A) = \alpha P(A)$, where α is a normalization constant #### Derivation If $A \subseteq C \cup \overline{C}$: $$P_{C}(A) = P_{C}((A \cap C) \cup (A \cap \overline{C}))$$ $$= P_{C}(A \cap C) + P_{C}(A \cap \overline{C})$$ $$= P_{C}(A \cap C) = \alpha P(A \cap C)$$ ## **Assumptions** - $P_C(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) = 0$ - if $A \subseteq C$, then $P_C(A) = \alpha P(A)$, where α is a normalization constant #### Derivation If $A \subseteq C \cup \overline{C}$: $$P_{C}(A) = P_{C}((A \cap C) \cup (A \cap \overline{C}))$$ $$= P_{C}(A \cap C) + P_{C}(A \cap \overline{C})$$ $$= P_{C}(A \cap C) = \alpha P(A \cap C)$$ Therefore: $$P_C(C) = \alpha P(C \cap C) = \alpha P(C) = 1 \implies \alpha = \frac{1}{P(C)}$$ ### **Assumptions** - $P_{C}(C) = 1$ - if $A \subseteq \overline{C}$, then $P_C(A) = 0$ - if $A \subseteq C$, then $P_C(A) = \alpha P(A)$, where α is a normalization constant #### Derivation If $A \subseteq C \cup \overline{C}$: $$P_{C}(A) = P_{C}((A \cap C) \cup (A \cap \overline{C}))$$ $$= P_{C}(A \cap C) + P_{C}(A \cap \overline{C})$$ $$= P_{C}(A \cap C) = \alpha P(A \cap C)$$ Therefore: $$P_C(C) = \alpha P(C \cap C) = \alpha P(C) = 1 \implies \alpha = \frac{1}{P(C)}$$ Finally: $$P_C(A) = \frac{P(A \cap C)}{P(C)}$$ #### Notation We denote with P(A|C) the probability of event $A \in \mathfrak{A}$ in a context where we now that $C \in \mathfrak{A}$ has occurred. ### Definition The conditional probability of A|C is defined as: $$P(A|C) = \frac{P(A \cap C)}{P(C)}$$ ### Product rule ### Definition The product rule stems directly from the conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$: $$P(A \cap B) = P(A|B)P(B) \tag{20}$$ #### Product rule #### Definition The product rule stems directly from the conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$: $$P(A \cap B) = P(A|B)P(B) \tag{20}$$ Since \cap is commutative (A \cap B = B \cap A), it also holds that: $$P(A \cap B) = P(B \cap A) = P(B|A)P(A)$$ (21) ## Recap - Probability theory can be seen as a theory of rational reasoning - In this theory, events are modeled with a Boolean algebra, which: - Comprises operators (∪, ∩, etc.) for defining complex events - Satisfies the intuitive laws of rational reasoning (e.g., $P(A) \le (A \cup B)$) - The probability itself is modeled as a function from events to [0,1] - In case of complex events, it can be calculated based on: $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $$P(A \cap B) = P(A|B)P(B)$$