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Neural Networks

Neural networks

Abstraction

Each neural network (NN) is simply a function with a set of parameters

For instance from Rn to Rm for some n,m > 0

Construction

Construction of NNs is based on:

Elementary building blocks (simple NNs: A,B,C, . . .)

Combination operators (e.g. function composition A ◦ B)
→ functional programming paradigm

However:

We cannot use just any building block and any combination operation

The building blocks should be differentiable

The combination operators should preserve this property

Fortunately:

Frameworks/domain specific languages make sure that we only build sane NNs
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Neural Networks

Network networks

Example

Code: https://github.com/kawu/bpfun (look in the ‘src‘ directory)

Library: backprop (https://backprop.jle.im/index.html)
→ automatic heterogeneous back-propagation library
→ allows to safely construct complex networks

Plan: build a simple neural translation system
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Neural Networks

Feed-forward network

Network function:
yk (x,w) = f

 M∑
j=0

w(2)
kj zj


zj = h

 D∑
i=0

w(1)
ji xi


Graphical representation:

Input, hidden, and output variables
represented by nodes

Weight parameters represented by
links between nodes

Arrows represent information flow
during forward propagation

(Source: [Bishop, 2006])
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Neural Networks

Expression power

Advantages:

Neural networks are said to be universal approximators:

“A two-layer [feed-forward] network with linear outputs can uniformly approximate any
continuous function on a compact input domain to arbitrary accuracy provided the
network has a sufficiently large number of hidden units.” [Bishop, 2006]

Seamless integration of word embeddings

Price to pay:

Relatively complex model→ lack of transparency

Parameters hard to learn
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Neural Networks

Word embeddings

Figure: Representing words as N-dimensional vectors
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RNN Encoder-Decoder

Basic NMT System

Encoder-Decoder

Input: concatenation of input word embeddings

v = x1 · x2 · . . . · xn

Encoder: calculate a vector representation of the output sentence

w = A(v)

Decoder: generate the output sentence from its hidden vector representation w

Issues

The size of the input vector v is not constant – it depends on the input length

Feed-forward networks calculate vectors – how can we generate a sequence of words?
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RNN Encoder-Decoder

Recursive Neural Network

Recursive Neural Network (RNN)

Input: sequence of vectors x = (x1, . . . , xn)

Output: sequence of vectors h = (h1, . . . , hn)

Recursive definition:

hi = A(xi , hi−1) (1)

= A(xi ,A(xi−1, hi−2))

= A(xi ,A(xi−1,A(xi−2, hi−3)))

= A(xi ,A(xi−1,A(xi−2,A(. . .A(x1, h0) . . .))))

Parameters: h0 + those of A

Intuitions

hi provides a summary of the prefix x1, . . . , xi

hn provides a summary of the entire input sequence x
→ precisely what we need for encoding
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RNN Encoder-Decoder

Recursive Neural Network

Graphical representation
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RNN Encoder-Decoder

Recursive Neural Network

Generative RNN

Input: vector h0 (here: representation of the the input sentence)

Hidden: sequence of vectors h = (h1, . . . , hm)

Output: sequence of words y = (y1, . . . , ym) with ym = EOS

Recursive definition:

P(yi | y1, . . . , yi−1, x) = softmax(G(hi−1)) (2)

hi = B(yi , hi−1) (3)

Parameters: those of B and G

Intuitions

hi provides a summary of the generated sentence y1, . . . , yi , as well as information on
what part of the input sentence has been already translated

y represents the output sentence→ precisely what we need for decoding
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RNN Encoder-Decoder

Recursive Neural Network

Graphical representation
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RNN Encoder-Decoder

RNN Encoder-Decoder

Architecture

Input: sequence of vectors x = (x1, . . . , xn)

Encoding: transform x into a fixed-length vector c
→ using standard RNN

Decoding: generate a translation y from the encoded vector c
→ using ,,generative” RNN
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RNN Encoder-Decoder

RNN Encoder-Decoder

Graphical representation
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RNN Encoder-Decoder

RNN Encoder-Decoder

Alternative architecture

Jakub Waszczuk (HHU) NMT Winter Semester 2018/19 17 / 26



RNN Encoder-Decoder

RNN Encoder-Decoder

Training

The two components of the RNN Encoder–Decoder are jointly trained to maximize the
conditional likelihood of the training data:

`(D) =
∏

(x,y)∈D

P(y | x) (4)

Probability for a particular sentence pair is defined as:

P(y | x) =
m∏

i=1

P(yi | y1, . . . , yi−1, x) (5)

where the individual P(yi | y1, . . . , yi−1, x) are calculated by the network (see Eq. 2)
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RNN Encoder-Decoder

Encoder-Decoder in Practice

Phrase-based [Cho et al., 2014]

Use the RNN Encoder-Decoder as a part of a standard phrase-based architecture

Update the phrase translation probabilities using the RNN Encoder-Decoder

Use the standard decoding algorithm on the modified phrase translation table

Seq2seq [Sutskever et al., 2014]

The RNN Encoder-Decoder is directly used to translate

The input sentence is encoded in a reversed direction (from end to start)
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RNN Encoder-Decoder: Extentions

RNN Encoder-Decoder

Issues

RNN Encoder-Decoder

is very simplistic

works poorly for long sentences

ignores 80% of what we have learned

of course we can apply better optimization techniques, but is it all we can do?

Trends

One of the trends in deep learning for NLP:

Benefit from what we know (about formal languages, linguistically inspired formalisms,
classical computational models, etc.) in order to design better network architectures
(see e.g. https://sites.google.com/view/delfol-workshop-acl19)
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RNN Encoder-Decoder: Extentions

Possible Extensions

Encoder: ,,additive” semantics

Assumption: the meaning of a sentence is the sum of the meanings of its words
→ that’s obviously naive (and not true)
→ but a better prior assumption that nothing

Encoder: compositional semantics

Assumption: the meaning of a sentence is a function of the meaning of its words and
its syntactic (tree) structure
→ much more plausible
→ we could apply ,,tree2seq” network architectures
→ not easy because we typically don’t know the structure of the input
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RNN Encoder-Decoder: Extentions

Possible Extensions

Phrase-based-like decoding

Each time a new word is to be
generated:

Pick the relevant fragment (≈
phrase) in the input sentence

Combine the vector representations
of its words

Based on that (and the previously
generated words), generate the next
word Figure: RNN Encoder-Decoder with Attention

[Bahdanau et al., 2014]
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RNN Encoder-Decoder: Extentions

RNN Encoder-Decoder with Attention

Figure: Example of alignments produced with attention-based RNN Encoder-Decoder
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RNN Encoder-Decoder: Extentions

Discussion

Discussion

Attention-based encoder-decoder can be seen as a variant of the phrase-based
translation model couched in the framework of NNs

It is one of the most influential NMT architectures nowadays

Not necessarily SOTA, but attention is also employed in higher-scoring systems
[Vaswani et al., 2017]
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