Statistical Machine Translation: Decoding

Jakub Waszczuk

Heinrich Heine Universität Düsseldorf

Winter Semester 2018/19

Outline

- Translation as Search
- Stack Decoding
- Hypothesis Recombination
- Beam Search

Outline

Translation as Search

- Stack Decoding
- Hypothesis Recombination
- Beam Search

Decoding: Problem Statement

Given

- Input sentence (sequence of words) \vec{x}
- Translation model $P_T(\vec{x} \mid \vec{y})$
- Language model $P_L(\vec{y})$

Goal (theory)

$$\arg\max_{\vec{y}} P_T(\vec{x} \mid \vec{y}) \times P_L(\vec{y})$$

Decoding: Problem Statement

Given

- Input sentence (sequence of words) \vec{x}
- Translation model $P_T(\vec{x} \mid \vec{y})$
- Language model $P_L(\vec{y})$

Goal (theory)

$$\arg\max_{\vec{y}} P_T(\vec{x} \mid \vec{y}) \times P_L(\vec{y})$$

Goal (practice)

$$\arg\max_{\vec{v}} \left(\max_{h} P_T(\vec{x}, h \mid \vec{y}) \times P_L(\vec{y}) \right)$$

where *h* corresponds to some hidden variable (alignment, phrase segmentation, etc.)

Today

Focus

We consider the task of decoding within the context of

- phrase-based translation model
- bigram language model

Decoding

$$\arg\max_{\vec{y}} \left(\max_{\varphi,a} P_T(\vec{x},\varphi,a \mid \vec{y}) \times P_L(\vec{y}) \right)$$

where

- $\blacksquare \varphi$ segmentation of \vec{x} and \vec{y} to phrases
- a alignment between phrases

Translation as Search

Search problem

Translation can be represented in the form of a *search problem*:

- We have a lot of possible solutions (translations)
- We search for what amounts to be the best solution

Challenge

- The set of possible translations exponential (in general: infinite)
- Infeasible to look at all solutions one by one

Structured Search

Observation

- Translations are structured
- Partial scores can be assigned to partial translations

Translation Process

Translating a Sentence

We represent translation as a sequence of steps:

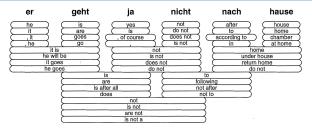
- Start with an empty output sentence
- In each step
 - Select a phrase *p* in the input sentence
 - Translate p it to an output phrase q
 - Append q at the end of the output translated so far
- Stop when all the words in the input sentence are translated

Phrase translation table

Translation process

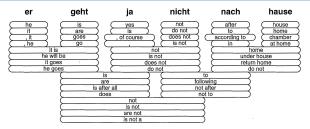
er geht ja nicht nach hause

Phrase translation table

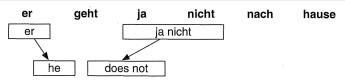


Translation process

Phrase translation table

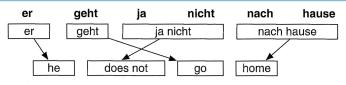


Translation process



Phrase translation table

Translation process



Scoring partial translations

In each translation step, a new phrase gets translated; we factor in:

- The corresponding phrase-translation probability
- The bigram probabilities
- The reordering cost

Example

er geht ja nicht nach hause

Score

1 ×

Example

ja

nicht

nach

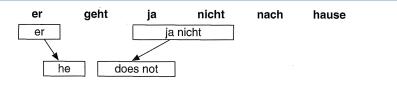
hause

11/39

Score

$$P_T(\text{er} \mid \text{he}) \times P_L(\text{he}) \times c(0) \times c(0)$$

Example



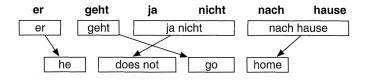
Score

1 ×

$$P_T(\text{er} \mid \text{he}) \times P_L(\text{he}) \times c(0) \times$$

 P_T (ja nicht | does not) × P_L (does not | he) × c(1) ×

Example



Score

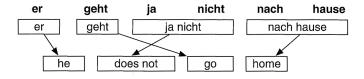
1 ×

$$P_T(\text{er} \mid \text{he}) \times P_L(\text{he}) \times c(0) \times$$

$$P_T$$
(ja nicht | does not) $\times P_L$ (does not | he) $\times c(1) \times c(1)$

$$P_T(\text{geht} \mid \text{go}) \times P_L(\text{go} \mid \text{not}) \times c(-3) \times$$

Example



Score

1 ×

$$P_T(\text{er} \mid \text{he}) \times P_L(\text{he}) \times c(0) \times$$

$$P_T$$
(ja nicht | does not) $\times P_L$ (does not | he) $\times c(1) \times c(1)$

$$P_T(geht \mid go) \times P_L(go \mid not) \times c(-3) \times C(-3)$$

$$P_T$$
(nach hause | home) $\times P_L$ (home | go) $\times c(2)$

Translation Process

Non-determinism

At any given step of the translation process

- There are many input phrases to choose from
- Each input phrase can be translated to several output phrases

The process of translation is non-deterministic

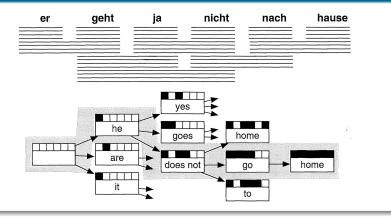
Tree Search

Idea

- Represent the translation process in the form of a search tree
- Each branch in this tree (path from the root to a leaf) represents a translation process
- We say that a leaf is *complete* if it represents a complete translation
- Goal: determine the highest-scoring complete leaf

Tree Search

Example



Tree Search

Formalization

We now formalize the process of construction of the search tree. We need:

- **Hypothesis**: node in the search tree / formal representations of a partial translation
- **Expansion**: arc in the search tree / process of determing next translation step
- Exploration: algorithm for tree traversal

Hypothesis

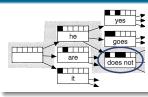
Definition

Let $x_1 \dots x_n$ be the input sentence of length n.

A *hypothesis* is a 4-tuple $h = \langle M, p, e, w \rangle$ where:

- $M \subseteq \{1, ..., n\}$ is the set of input positions translated so far
- p is the last output phrase of the partial translation generated so far^a
- *e* is the last input position of the last translated phrase
- *w* is the partial weight/score of the generated partial translation

Example (er geht ja nicht nach hause)



- $M = \{1, 3, 4\}, p = \text{does not}, e = 4$
- $w = P_T$ (ja nicht | does not) × P_T (er | he) × P_L (he does not) × c(0) × c(1)

^aThis is enough in case of the bigram model.

Hypothesis

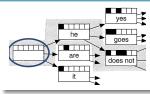
Definition

Let $x_1 \dots x_n$ be the input sentence of length n.

A *hypothesis* is a 4-tuple $h = \langle M, p, e, w \rangle$ where:

- $M \subseteq \{1, ..., n\}$ is the set of input positions translated so far
- p is the last output phrase of the partial translation generated so far^a
- *e* is the last input position of the last translated phrase
- *w* is the partial weight/score of the generated partial translation

Example (er geht ja nicht nach hause)



$$M = \emptyset$$
, $p = \times$, $e = -1$

w = 1

^aThis is enough in case of the bigram model.

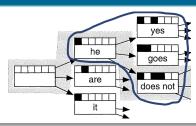
Hypothesis Expansion

Expansion

Given hypothesis h, list all hypothesis which expand on h by

- selecting a not-yet-translated contiguous fragment in the input sentence
- selecing a possible translation of this fragment according to the phrase translation table
- creating the hypothesis resulting from the selected phrase translation

Example



Hypothesis Expansion

Algorithm 1 Hypothesis expansion (simple, could be optimized)

```
given hypothesis h = \langle M, \vec{p}, e, w \rangle
for i = 1 \dots n do
     for i = i \dots n do
         if \{i, i+1, \ldots, j\} \cap M = \emptyset then
                                                        the selected span must not be translated yet
               let \vec{x} = x_i \dots x_i
                                                                                             ▶ input phrase to translate
               for each \vec{y} \in R_E(\vec{x}) do
                                                                                 \triangleright for each potential translation of \vec{x}
                   let w' = w \times P_T(\vec{x} \mid \vec{y}) \times P_L(\vec{y} \mid \vec{p}) \times c(|i - e - 1|)
                   let M' = M \cup \{i, i + 1, ..., i\}
                    w' \leftarrow w' \times P_1 (\bowtie | \vec{y}) if M' = \{1, 2, ..., n\} \triangleright in case of complete hypothesis
                    yield \langle M', \vec{y}, j, w' \rangle
               end for
          end if
     end for
end for
```

Search Tree Exploration

Exploration algorithms

Different algorithms, with different trade-offs, can be used to explore the search tree:

- Depth-first search
- Breadth-first search

Search Tree Exploration

Algorithm 2 Breadth-first search

```
let Q be an empty queue of hypotheses
let G be an empty set of completed hypotheses
place empty hypothesis in Q
while Q not empty do
   remove h from Q
   if h complete then
      add h to G
   else
      for each expansion h' of h do
         add h' to Q
      end for
   end if
end while
```

Search Tree Exploration

Issue

Standard graph-exploration algorithms (such as breadth-first search) are impractical (except for very short sentences), because:

- The first solution found is not enough (why?)
- The entire search tree is explored
- The size of this tree is exponential

Outline

- Translation as Search
- Stack Decoding
- Hypothesis Recombination
- Beam Search

Optimized Search

Idea

- Focus on the *promising* parts of the search tree
- We need to be able to answer the following question: given two nodes v and w, which of them is more promising to explore?
- Promising = with higher scores

Comparable hypotheses

■ We say that two hypothesis $h = \langle M, p, e, w \rangle$ and $h' = \langle M', p', e', w' \rangle$ are *comparable* if

$$|M| = |M'| \tag{1}$$

 Idea: the scores of comparable hypotheses involve roughly the same number of multiplications – hence, they can be meaningfully compared

Idea

- Hypothesis are organized into groups, called stacks, with hypothesis present in the same stack being comparable between each other
- We start with the empty hypothesis, as in tree search
- The subsequent stacks are gradually filled via hypothesis expansion

no word

translated

Example (er geht ja nicht nach hause) goes does not

one word

translated.

two words

translated

three words

translated

Algorithm 3 Pseudocode

```
place empty hypothesis into stack 0 for each stack i = 0 \dots n - 1 do for each hypothesis h in stack i do for each expansion h' of h do let k be the number of translated words in h' place h' in stack k end for end for
```

Stack Decoding

Properties

- Stack decoding provides a different startegy of exploring the space of hypothesis
- Computationally, it still involves generating all possible hypothesis and translations
- It's advantage lies in the fact that it allows convenient pruning heuristics

Outline

- Translation as Search
- Stack Decoding
- Hypothesis Recombination
- Beam Search

Optimization Strategies

Pruning

- Idea: trim the branches considered as not promising/useless based on partial scores
- Examples: dead-end detection (exact), branch-and-bound (exact), hypothesis recombination (exact), beam search (approximate)

Score-guided exploration

- Idea: explore the nodes of the search graph in an order consistent with the scores
- Goals: (i) find the optimal (or close to optimal) hypothesis, (ii) explore as small a part of the search graph as possible
- Examples: shortest-path algorithms (Dijkstra, A*)

Note: we will look more closely at the techniques marked in bold

Hypothesis Recombination

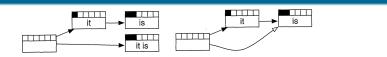
Recombination

Let $h = \langle M, p, e, w \rangle$ and $h' = \langle M', p', e', w' \rangle$ be two hypothesis. Let also last(x) be the last word of phrase x. Then, if:

- M = M'
- \blacksquare last(p) = last(p')
- || w > w'

we can safely ignore (prune) h' and all its direct and indirect expansions.

Example



Hypothesis Recombination

Recombination

Let $h = \langle M, p, e, w \rangle$ and $h' = \langle M', p', e', w' \rangle$ be two hypothesis. Let also last(x) be the last word of phrase x. Then, if:

- M = M'
- \blacksquare last(p) = last(p')

we can safely ignore (prune) h' and all its direct and indirect expansions.

Example

Hypotheses Recombination

Algorithm 4 Stack Decoding with hypotheses recombination

```
place empty hypothesis into stack 0

for each stack i = 0 \dots n-1 do

for each hypothesis h in stack i do

for each expansion h' of h do

let k be the number of translated words in h'

place h' in stack k

recombine h' with another hypothesis in stack k if possible end for end for
```

Hypotheses Recombination

Consequences

- Significantly reduced search space
- Still, in practice, not enough for efficient decoding

Outline

- Translation as Search
- Stack Decoding
- Hypothesis Recombination
- 4 Beam Search

ldea

Beam search combines stack decoding with

- histogram pruning
- threshold pruning

Histogram pruning

Given parameter K > 0

■ limit each stack to the K hypotheses with the best scores

Histogram pruning

Given parameter K > 0

■ limit each stack to the K hypotheses with the best scores

Threshold pruning

Given parameter α , for any stack k

- \blacksquare let w_{best} be the best score in stack k
- lacktriangle remove from stack k any hypothesis with score smaller than $\alpha imes \mathbf{w}_{best}$

Algorithm 5 Stack decoding with pruning

```
place empty hypothesis into stack 0

for each stack i = 0 \dots n-1 do

for each hypothesis h in stack i do

for each expansion h' of h do

let k be the number of translated words in h'

place h' in stack k

recombine h' with another hypothesis in stack k if possible prune stack k if necessary

end for

end for
```

Consequences

- Histrogram pruning guarantees efficient (polynomial) decoding
- Threshold pruning ,,smarter" but no efficiency guarantees
- In practice, combination of both techniques typically used

Optimization

Other optimization techniques used in SMT

- Remaining score estimation
- Shortest-path A* algorithm

More on them in the complementary material