
Decoding (Additional Notes)

Jakub Waszczuk

January 2019

1 Search tree
The space of possible translations is represented in the form of a search tree:

• Each node in the tree represents a hypothesis (partial translation)

• Each arc represents expansion of a hypothesis to another hypothesis; the
arc is labeled with the corresponding translation step (translation of a not-
yet-translated phrase in the input sentence to an output phrase) as well
as the corresponding score (i.e. the probability of the effectuated phrase
translation × the incurred language model cost × reordering cost)

• Each branch from the root to a leaf node represents a particular translation
process and – if the leaf represents a complete hypothesis – a complete
translation (output sentence)

• The overall score of the branch1 represents the score of the corresponding
translation

2 Pruning
One of the main techniques to optimize the search for best the translation is
pruning. It consists in removing some of the branches of the search tree and,
consequently, making the search space smaller.

Pruning can be safe, in the sense that it can be performed in a way which
does not make the exploration fail (even though a complete hypothesis exists)
or find a sub-optimal solution. This is the case if we use AI techniques such as
dead-end detection or hypothesis recombination.

We can also use pruning heuristics, which are more aggressive and do not
provide the guarantees of safe pruning. On the other hand, these can lead
to more significant search space reductions and, as a consequence, practical
runtime. An example of a heuristic pruning technique is beam search.

1Multiplication of the scores of the arcs on the branch in normal domain, or sum in loga-
rithmic domain

1

2.1 Dead-end detection
Dead-end detection simply consists in determining if, from a given node, a path
to a complete hypothesis (and, therefore, complete translation) exists at all. If
not, the search algorithm is faced with a „dead-end” which is not worth further
exploring.

A generalized form of dead-end detection can involve determining if a best-
score solution can be reached from the given node. If the answer is „no”, such
a branch can be safely pruned as well. A simple criterion can be used here – if
the partial score of the current node is lower than the score of the best complete
solution found so far (if any), we can safely skip the current branch. This is safe
because, while expanding hypotheses, the score only gets lower. This technique
can be especially effective in depth-first tree exploration (which will typically
find some reference complete translation much faster than breadth-first search).

2.2 Hypothesis recombination
Another safe technique is hypothesis/node recombination. It involves pruning
newly generated nodes equivalent to other, already existing nodes.

Definition 1. We say that two nodes v and v′ are equivalent if:

• Each sequence of translation steps leading from v to a complete translation
l can be also applied to v′, resulting in a complete translation l′

• And vice versa, each sequence of translation steps leading from v′ to a
complete translation l′ can be also applied to v, also resulting in some
complete translation l

If v and v′ are equivalent, and we know that we can reach a complete trans-
lation from v, we can be sure to be able to reach a complete translation from v′.
Moreover, we can be sure that the minimal remaining score s needed to reach a
complete translation from v is the same as the minimal remaining score needed
to reach a complete translation from v′. Therefore, if the partial score p of v is
higher than the partial score p′ of v′, than we can drop v′, because the overall
cost p × s of the best translation reachable from v is higher than p′ × s, the
overall cost of the best translation reachable from v′.

Hypothesis recombination alone is not enough to obtain efficient decoding.

Proposition 1. The time complexity of decoding (e.g. stack decoding) with
hypothesis recombination is exponential in the worst case.

Proof. Recombination only applies to hypotheses with the same set of covered
input positions M .2 Even if we recombine all hypotheses with the same set
M , there are still 2n distinct coverage sets that can be created (all subsets of
{1, . . . , n}, where n is the length of the input sentence). In the worst case, one or
more hypotheses (differing on the last translated position e or the last translated
phrase p) will be created for each distinct coverage set, resulting in the number
of distinct hypotheses exceeding 2n (=⇒ exponential search space). The time
complexity is also exponential because a standard decoding algorithm has to
explore the entire search space.

2Recall from the lecture that each hypothesis has the form of a tuple 〈M,p, e, w〉.

2

2.3 Beam search
In beam search the nodes of the search tree are organized into stacks of mutually
comparable3 hypotheses. The basic idea of beam search is very simple – if a
stack gets too large, the lowest-scoring nodes are removed from it. The easiest
flavor of beam search-related pruning is the so-called histogram pruning, which
involves keeping a maximum K number of nodes in each stack, K being a pre-
determined parameter.

Proposition 2. Let n be the length of the input sentence and T be the maxi-
mum number of possible translations for any given input phrase in the phrase
translation table. Let also assume that the cost of placing a hypothesis in a
stack has constant time (i.e., cost 1). Then, the time complexity of beam search
decoding is polynomial in n, K, and T .

Proof. Beam search decoding looks like this:

• For each stack k from 0 to n− 1

• For each node/hypothesis h in stack k

• For each expansion h′ of h, add h′ to the corresponding stack > k

The first point involves n top-level steps. For each top-level step, we look at
all (at most) K hypotheses h in the corresponding stack k. We then determine
all possible expansions h′ of h. To this end, we use the expansion algorithm
given during the lecture, which involves looking at less than n2 spans (i, j) : 1 ≤
i ≤ j ≤ n in the input sentence and, for each not-yet-translated span (i, j),
considering at most T of its possible translations. Finally, we place h′ in the
corresponding stack, which is constant time. To summarize, the upper bound
on the cost of the entire process is:

n×K × n2 × T = n3 ×K × T

Therefore, the algorithm is polynomial in n, K, and T .

3 Remaining cost estimation
The effectiveness of beam search directly depends on the quality of partial scores.
Put differently, if the score of a node (partial translation) really reflects its
quality, then we can simply compare the scores of any given two nodes in order
to determine which of the two is better (and which can be pruned).

Unfortunately, the link between the partial score of a node and the node’s
quality is not so direct. In fact, to be really able to ascertain its quality in a
reliable manner, we would have to first determine the complete translations to
which it can expand, as well as their overall translation scores. This would allow
to avoid situations where a partial translation has a (relatively) high score, even
though it does not lead to any good translation (or, worse, doesn’t lead to any
translation at all!). But, of course, this is not realistic – when we look at a
particular node and try to make the decision whether it should be pruned or

3Two hypotheses are comparable if they have the same number of translated input words.
As a result, both involve the same number of cost multiplications.

3

not, we don’t know to what complete translations it can evolve, nor what their
overall scores would be.

This leads to the idea of estimating the remaining cost. Instead of determin-
ing the minimum remaining cost r(v) of reaching a complete translation from a
given node v, we design a heuristic function h which estimates r. Then, when
trying to decide whether a particular node v is useful, we take into account its
total score s(v)× h(v) rather than just its partial score s(v).

Definition 2. Let V be the set of nodes in the search graph, v ∈ V be a node,
s(v) be its partial score, and h : V → [0, 1] be a heuristic. Then, we define v’s
total score as:

t(v) = s(v)× h(v) (1)

In general, we could use any heuristic function h : V → [0, 1], but that
wouldn’t necessarily be useful. In practice, we typically want the heuristic to
be admissible.

Definition 3. We say that h : V → [0, 1] is admissible if, for any give node v:

h(v) ≥ r(v) (2)

The advantage of an admissible heuristic is that, whatever the cost h(v) it
gives for a given node v, we can be sure that it will have to be incurred before
expanding v to a complete translation. Hence, it makes sense to use t(v) =
s(v) × h(v) in place of s(v) as the measure of the quality of node v. Another
advantage is that an admissible heuristic can be used in the A? algorithm (see
Sec. 4).

Apart from being admissible, the general goal when designing a heuristic
is to make it as close to r as possible. Indeed, if h = r, then we get perfect
estimations and search can be simply reduced to a traversal of a single path
from the root to an optimal leaf obtained by following the nodes with the best
total scores.

3.1 Remaining cost estimation in SMT
For simplicity, let’s assume a word-based translation model (e.g. IBM-1) PT .
What follows could be generalized to phrase-based models, but the calculations
would be significantly more complicated then (even if still feasible).

The goal is to define a heuristic h(v) which, for a given node v, estimates
the cost remaining to reach a complete translation starting from v. Recall from
the lecture, that each node/hypothesis is a tuple 〈M,p, e, s〉, where:

• M ⊆ {1, . . . , n} is the set of input positions translated so far (n is the
length of the input sentence)

• p is the last output phrase of the partial translation generated so far4

• e is the ending input position corresponding to the last translated phrase

• s is the partial score of the generated partial translation
4This is enough in case of the bigram model.

4

A simple way to obtain an admissible heuristic is to optimistically assume that
each of the words remaining to translate in the input sentence will be trans-
lated using the best possible entry in the underlying lexical translation table.
Formally:

h(v) =
∏

k∈{1,...,n}\M

max
y

P (x | y) (3)

What about other costs – reordering, fertility, language model, etc.? In the
formula above we just assume that they don’t cost anything. It’s not a problem
because it doesn’t break the admissibility of the heuristic. In general, the rule of
thumb when designing admissible cost estimation heuristics is – be optimistic.
Of course, we could try to estimate and include these additional costs in our
estimation and, provided that we manage to preserve admissibility, the resulting
heuristic would be better and lead to more reliable pruning.

4 Shortest-path decoding
The A? algorithm is an instance of a shortest-path algorithm, i.e., a method
which allows to find a shortest path in a weighted graph.

Definition 4. Let G = (V,E) be a graph, where V is the set of nodes and E
is the set of arcs. A weighted graph is a pair (G,w), where G is a graph and
w : E → [0,∞) is a function which assigns non-negative weights to arcs in E.

From now on, we assume that we have a pre-determined graph G = (V,E)
weighted with function w. Moreover, we assume that there is single root node
(with no incoming arcs) R ∈ V and a set of target nodes T ⊂ V . In the context
of SMT decoding, R will represent the empty hypothesis, and T – the set of
complete hypotheses.

Definition 5. We define a path in G as a sequence of arcs connecting two
nodes v, v′ ∈ V . We then also say that such a path leads from v to v′.

Definition 6. Let p be a path in G. We define the weight of path p as the sum
of the weights of the arcs in p.

w(p) =
∑
e∈p

w(e)

Definition 7. Given v ∈ V , we denote with w(v) the weight of node v ∈ V ,
i.e., the weight of the minimal-weight path leading from R to v.

Definition 8. Let A be an algorithm which returns a path in G leading from
R to a target node. We call A a shortest-path algorithm if the path it returns
is the one with the lowest weight among all the paths leading from R to a target
node.

What is the relation between a shortest-path algorithm and our problem?
At first sight, there are important differences:

• The search space in SMT decoding is a tree and not a graph.

• The score of a branch in the search tree is the product of the scores assigned
to its arcs, not their sum.

5

• In SMT search we look for a complete leaf with the highest score, while a
shortest-path algorithm looks for the shortest path to a target node.

The first point is not really an issue, though, since a tree is simply a graph with
the additional constraint that any node can have at most one incoming arc (a
restriction which a graph does not have to satisfy). Moreover, a search tree in
SMT can take the form of a graph if hypothesis recombination is used to merge
rather than to prune spurious hypotheses.

Note that in case we stick to a tree-structured search space, the definition
of the weight of a node (Def. 7) becomes simpler – given a node v ∈ V , it is the
weight of the only path from the root (empty hypothesis) to v.

The second and the third point can be solved at the same time. To this
end, we transform each score s to the corresponding weight w = −log(s). Since
scores belong to [0, 1], the resulting value is within [0,∞], with the smallest
possible weight 0 corresponding to the highest possible score 1 and the highest
possible weight ∞ corresponding to the smallest possible score 0. Moreover,
since we transform scores from normal to (negated) log domain,

• the product of scores becomes the (negated) sum of weights, and

• the shortest path corresponds to the highest score solution.

4.1 A? decoding
The A? algorithm (see Alg. 1) is an example of a shortest-path algorithm. It
relies on a heuristic estimation of the remaining distance.

Definition 9. Let r : V → [0,∞) be a function which, for any given v ∈ V ,
returns the weight of the minimal path leading from v to a target node. Then,
we call r a remaining distance function.

Definition 10. Let h : V → [0,∞) be a function which heuristically estimates
(approximates) r. Then, we call h a remaining distance estimation heuristic.

Even though A? relies on a heuristic estimating the remaining distance, it
is not heuristic itself – provided that the underlying heuristic satisfies certain
properties, the A? algorithm guarantees to find the shortest path in the graph,
and therefore it is exact. Moreover, the better the heuristic estimates the re-
maining distance, the smaller the part of the search tree/graph the algorithm
will have to effectively explore.

The A? algorithm resembles a lot the breadth-first search algorithm pre-
sented during the lecture. The crucial difference is that, instead of using a
standard queue to store newly discovered hypotheses, it uses a priority queue.
The hypotheses are stored in this queue not in the first-in-first-out fashion, but
in the order consistent with their total weights (see also Def. 2):

Definition 11. Let v ∈ V . We define v’s total weight as:

t(v) = w(v) + h(v) (4)

Each time a hypothesis is removed from the queue (cf. line 1.5), it is the
hypothesis with the smallest total weight.

6

Algorithm 1 A?

1: let Q be an empty priority queue of hypotheses
2: let G be an empty set of completed hypotheses
3: place empty hypothesis in Q
4: while Q not empty do
5: x← delete-min(Q)
6: if h complete then
7: add h to G
8: else
9: for each expansion h′ of h do

10: add h′ to Q
11: end for
12: end if
13: end while

Definition 12. We say that h is admissible if, for any give node v ∈ V :

h(v) ≤ r(v) (5)

In words, an admissible heuristic must never overestimate the remaining
distance. Note that this definition is an inverse of Def. 3 – this is because we
are working in the negated log-domain now.

Definition 13. We say that h is monotonic if, for each hypothesis v and its
expansion v′ in the search graph:

t(v) ≤ t(v′) (6)

In different terms, the heuristic is monotonic if the total weights never de-
crease as the algoritm explores the search space, they only increase or stay level.

The following propositions refer all to Algorithm 1.

Proposition 3. The hypotheses are removed from the priority queue in an
ascending order of their total weights.

Proof. Follows from

• the definition of the priority queue – we know that, when a hypothesis is
removed from the queue, it is the one with the smallest total weight,

• the fact that once a hypothesis v is removed from the queue, it is not
possible to generate another hypothesis v′ with t(v′) < t(v) – that would
contradict the monotonicity of the heuristic.

Proposition 4. Assuming a tree-structured search space, the first complete
hypothesis removed from the priority queue corresponds to the shortest path from
R (empty hypothesis) to a target node (complete hypothesis) and, equivalently,
to the highest-score translation of the input sentence.5

5In fact, Prop. 4 also holds within the context where the search space is graph-structured.
But in order to find the best-score translation, search tree is sufficient.

7

Proof. Follows directly from Prop. 3 and from the fact that, once a complete
hypothesis v is removed from the queue, t(v) = w(v). Therefore, for each
subsequent (complete or not) hypothesis v′ removed from the queue, t(v′) ≥
t(v′) = t(v).

Finally, let’s note that the hypothesis recombination-based pruning can be
easily combined with A?. We just need to (i) keep track of the already visited
nodes, and (ii) check, each time a hypothesis v is removed from the queue, that
another hypothesis v′ with which v can be recombined was not already visited;
if so, v can be safely ignored.6

6An alternative is to recombine hypotheses already when adding them to the priority queue,
but that is a bit more complicated and goes some way in the direction of a graph-based search
space.

8

	Search tree
	Pruning
	Dead-end detection
	Hypothesis recombination
	Beam search

	Remaining cost estimation
	Remaining cost estimation in SMT

	Shortest-path decoding
	A decoding

