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1 Preliminaries
As usual, we denote by:

• f – an input sentence of length n (actually n + 1, if you take NULL into
account)

• e – an output sentence of length m

• A(m,n) – the set of all possible alignments between e and f (which only
depends on the lengths n and m)

2 Viterbi Alignment
Definition 1. Given f and e, we define the Viterbi alignment as the align-
ment with the highest probability according to the underlying probabilistic model:

â = arg max
a∈A(m,n)

P (a | e,f) (1)

How to determine the Viterbi alignment for a given sentence pair? This
depends on the underlying model. Here we only consider IBM-1, for which an
exact solution can be easily determined. This is in contrast to, e.g., IBM-3
or IBM-4, for which computing Viterbi alignments is infeasible. As a result,
heuristics (e.g., hill climbing) which only approximate Viterbi alignments have
to be used.

Let’s now get back to IBM-1. In this model, the probability of alignment a
given f and e is represented by the following formula:

P (a | e, f) =

m∏
i=1

P (a(i) | e, f) (2)

Where P (a(i) | e, f) is the probability of a particular alignment point a(i):

P (a(i) | e, f) =
P (ei | fa(i))∑n
j=1 P (ei | fj)

(3)

Both Eq. 2 and Eq .3 were introduced in the second lecture on IBM-1.

Proposition 1. The Viterbi alignment for a given pair (e,f) is the one which
maximizes P (a(i) | e,f) for each output position i ∈ {1, . . . ,m} independently.
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Proof. Let’s assume that this is not true. Then, for some sentence pair (e,f)
and the corresponding Viterbi alignment â, there would exist an output position
i aligned with the input position â(i) = k such that:

P (a(i) = k | e,f) < P (a(i) = k′ | e,f)

for some other input position k′ ∈ {0, . . . , n} : k′ 6= k. But then, the probability
P (ā | e,f) of the alignment ā defined as:

ā(j) =

{
â(j) if j 6= i

k if j = i

would be even higher than the probability of â. This, however, is contradictory
with the assumption that â is the Viterbi alignment.

There is also another, more generic way to understand why the choice of the
alignments for the individual output positions can be performed independently.
Namely, for any two output positions i, j : i 6= j, the corresponding two random
variables a(i) and a(j) are conditionally independent1 given f and e.

This independence has an intuitive interpretation – whatever the value we
choose for a(i), it does not impact the probability of a(j) in any way. Conse-
quently, we can maximize their probabilities independently from each other.

Proposition 2. Let X, Y be two random variables, conditionally independent
given another variable Z. Then, the following holds for any value z of Z:

max
x,y

P (x, y | z) = max
x

P (x | z)×max
y

P (y | z) (4)

Proof. Formally, the conditional independence of X, Y , given Z, means that
for any values x, y, z of X,Y, Z:

P (x, y | z) = P (x | z)× P (y | z)

Therefore:

max
x,y

P (x, y | z) = max
x,y

P (x | z)× P (y | z)

= max
x

(
max

y
P (x | z)× P (y | z)

)
= max

x
P (x | z)×max

y
P (y | z)

The last transformation above is possible because P (x | z) does not depend on
y and, therefore, can be extracted out of the inner maxy.

1This conditional independence stems Eq. 2, but we are not going to prove it formally here.
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