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Translation Probability

Reminder

Translation process

Split input sentence into phrases, each belonging to RF

Translate each phrase independently, according to phrase translation function P

Reorder the resulting output phrases

Example

natuerlich1 hat2 john3 spass am4 spiel5

of course1 john2 has3 fun with the4 game5
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Translation Probability

Segmentation model

Uniform model

Given input sentence f

Every segmentation of f into a sequence ~f ∈ R∗F is assumed to be equally probable

A posteriori

Effectively, the probability of a particular split depends on the other components of the
model (phrase translation function, reordering model, language model)

Segmentations with longer phrases are generally preferred (length bias)

Length bias example
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Translation Probability

Reordering model

Reordering cost function

Reordering is handled by a predefined model. Let:

beg(i) – the position of the beginning of the foreign phrase corresponding to the i-th
English phrase

fin(i) – the position of the end of this foreign phrase (special case: fin(0) B 0)

d(i) – the relative reordering distance,

d(i) = | beg(i) − fin(i − 1) − 1| (1)

The cost related to the i-the English phrase is defined as:

c(i) B αd(i), where α ∈ [0, 1] (2)
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Translation Probability

Reordering model

Example

Total reordering cost: α0 × α2 × α3 × α1
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Translation Probability

Reordering cost

Properties

Provided that α < 1, rearrangements are always penalized

The smaller the α value, the larger the penalties

Alpha value

α is not estimated from data

α is determined empirically, via system’s evaluation

Therefore, α is a hyper-parameter in this architecture

Theoretically

Even though the values of the cost function c are within [0, 1]

In general, c is not a probability function

Jakub Waszczuk (HHU) Phrase-based Models II Winter Semester 2018/19 9 / 23



Translation Probability

Translation

Preliminaries

f , e – input and output sentences

ϕ – segmentation of e and f into a number (denoted |ϕ|) of phrases

ϕi(x) – the i-the phrase in x (either e or f )

a : {1, . . . , |ϕ|} → {1, . . . , |ϕ|} – a phrase alignment (permutation)

c : N→ [0, 1] – the alignment cost function

Translation cost

P(e, a, ϕ | f) ∝

|ϕ|∏
i=1

P(ϕa(i)(e) | ϕi(f)) × c(i) (3)

For more, see the complementary material.
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Translation Probability

Translation cost

Example

natuerlich1 hat2 john3 spass am4 spiel5

of course1 john2 has3 fun with the4 game5

Translation, segmentation, and alignment cost, given the input sentence:

P(of course | natuerlich) × α0

P(john | john) × α1

P(has | hat) × α2

P(fun with the | spass am) × α1

P(game | spiel) × α0
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Translation Probability

Digression

Alternative reordering model

We have pre-determined word-level alignments

We could estimate reordering probabilities, as in IBM-3

But this is not typically done in phrase-based models
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Translation Probability

Searching for translation

Theoretically

arg max
e

P(e | f) = arg max
e

∑
a,ϕ

P(e, a, ϕ | f)

 (4)

Practically

arg max
e

P(e | f) ≈ arg max
e

(
max

a,ϕ
P(e, a, ϕ | f)

)
(5)
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Translation Probability

Searching for translation

Example
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Translation Probability

Searching for translation

Example (where approximation doesn’t work)
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Parameter Estimation

Parameter Estimation

Parameters

Phrase translation probabilities:{
P(e | f) for each f ∈ RF and e ∈ RE(f)

}
(6)

No fertility parameters

No segmentation parameters

No reordering parameters
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Parameter Estimation

Parameter Estimation

Collecting counts

Goal: determine the number of times phrase f̄ translates to phrase ē in corpus D

We have the word alignments in D (we use them to extract phrase pairs)

The phrase extraction algorithm gives us a list of phrase pairs occurring in D

We calculate how many times (ē, f̄) occurs in this list

Maximum likelihood estimates

Let C (̄f → ē; D) be the count of (ē, f̄) in D. Then, we define the MLE estimates as:

P̂(ē | f̄) =
C (̄f → ē; D)∑

ē′∈RE (̄f) C (̄f → ē′; D)
(7)
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Parameter Estimation

Collecting Counts

Example

a b a b

c

d

c

d

a b a b

d

c

c

d

P̂(c d | a b) = ?
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Parameter Estimation

Collecting Counts: Alternative Method

Idea

Given a sentence pair and the corresponding word alignment A :

Consider all the possible phrase alignments consistent with A

Assume that all have the same, uniform probability

Calculate the expected counts

Example
a b a b
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Parameter Estimation

Collecting Counts: Alternative Method

EM

We can extend this further:

For each sentence pair, we have a set of possible phrase alignments

We can assume that they are uniformly distributed, as before

We can also use the phrase translation parameters to determine the a posteriori
probabilities of these alignments according to the phrase-based translation model

This leads to Expectation-Maximization for the phrase-based model.
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Parameter Estimation

Collecting Counts

For the practical sessions

The first method (collecting counts stemming from the phrase pair extraction algorithm)
is somewhat ad-hoc

But it’s the simplest one so we are going to use it anyway
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Parameter Estimation

In 2019

Decoding

Given:

Phrase-based translation model

Language n-gram model

Input sentence to translate

Task:

Determine the most probable translation

Computationally hard, hence special approximation techniques
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