Statistical Machine Translation: Phrase-based Models (Part II)

Jakub Waszczuk

Heinrich Heine Universität Düsseldorf

Winter Semester 2018/19

Outline

Translation Probability

Parameter Estimation

Winter Semester 2018/19

Outline

Translation Probability

Parameter Estimation

Reminder

Translation process

- Split input sentence into phrases, each belonging to R_F
- Translate each phrase independently, according to phrase translation function P
- Reorder the resulting output phrases

Example

Reminder

Translation process

- Split input sentence into phrases, each belonging to R_F
- Translate each phrase independently, according to phrase translation function P
- Reorder the resulting output phrases

Example

Segmentation model

Uniform model

- Given input sentence f
- Every segmentation of f into a sequence $\vec{f} \in R_F^*$ is assumed to be equally probable

A posteriori

- Effectively, the probability of a particular split depends on the other components of the model (phrase translation function, reordering model, language model)
- Segmentations with longer phrases are generally preferred (length bias)

Length bias example

Reminder

Translation process

- Split input sentence into phrases, each belonging to R_F
- Translate each phrase independently, according to phrase translation function P
- Reorder the resulting output phrases

Example

Reordering model

Reordering cost function

Reordering is handled by a predefined model. Let:

- beg(i) the position of the beginning of the foreign phrase corresponding to the i-th English phrase
- fin(i) the position of the end of this foreign phrase (special case: fin(0) := 0)
- $\mathbf{d}(i)$ the relative reordering distance,

$$d(i) = |\log(i) - \sin(i - 1) - 1| \tag{1}$$

The cost related to the *i*-the English phrase is defined as:

$$c(i) := \alpha^{d(i)}$$
, where $\alpha \in [0, 1]$ (2)

Reordering model

Example

Total reordering cost: $\alpha^0 \times \alpha^2 \times \alpha^3 \times \alpha^1$

Reordering cost

Properties

- lacktriangle Provided that α < 1, rearrangements are always penalized
- \blacksquare The smaller the α value, the larger the penalties

Alpha value

- α is not estimated from data
- ullet α is determined empirically, via system's evaluation
- Therefore, α is a *hyper-parameter* in this architecture

Theoretically

- Even though the values of the cost function c are within [0, 1]
- In general, c is not a probability function

Translation

Preliminaries

- f, e input and output sentences
- $\mathbf{v} \mathbf{v} = \varphi$ segmentation of \mathbf{e} and \mathbf{f} into a number (denoted $|\varphi|$) of phrases
- $\varphi_i(\mathbf{x})$ the *i*-the phrase in \mathbf{x} (either \mathbf{e} or \mathbf{f})
- $a: \{1, \ldots, |\varphi|\} \rightarrow \{1, \ldots, |\varphi|\}$ a phrase alignment (permutation)
- lacksquare c: $\mathbb{N} \to [0, 1]$ the alignment cost function

Translation cost

$$P(\boldsymbol{e}, a, \varphi \mid \boldsymbol{f}) \propto \prod_{i=1}^{|\varphi|} P(\varphi_{a(i)}(\boldsymbol{e}) \mid \varphi_i(\boldsymbol{f})) \times c(i)$$
(3)

10/23

For more, see the complementary material.

Translation cost

Example

Translation, segmentation, and alignment cost, given the input sentence:

$$P(\text{of course} \mid \text{natuerlich}) \times \alpha^0$$

$$P(\text{john} | \text{john}) \times \alpha^1$$

$$P(\text{has} \mid \text{hat}) \times \alpha^2$$

$$P(\text{fun with the } | \text{spass am}) \times \alpha^1$$

$$P(\text{game} \mid \text{spiel}) \times \alpha^0$$

Digression

Alternative reordering model

- We have pre-determined word-level alignments
- We could estimate reordering probabilities, as in IBM-3
- But this is not typically done in phrase-based models

Searching for translation

Theoretically

$$\arg\max_{\mathbf{e}} P(\mathbf{e} \mid \mathbf{f}) = \arg\max_{\mathbf{e}} \left(\sum_{\mathbf{a}, \varphi} P(\mathbf{e}, \mathbf{a}, \varphi \mid \mathbf{f}) \right)$$
(4)

Practically

$$\arg\max_{\mathbf{e}} P(\mathbf{e} \mid \mathbf{f}) \approx \arg\max_{\mathbf{e}} \left(\max_{a,\varphi} P(\mathbf{e}, a, \varphi \mid \mathbf{f}) \right)$$
 (5)

Searching for translation

Example

Searching for translation

Example (where approximation doesn't work)

15/23

 Jakub Waszczuk (HHU)
 Phrase-based Models II
 Winter Semester 2018/19

Outline

Translation Probability

Parameter Estimation

Parameter Estimation

Parameters

Phrase translation probabilities:

$$\{P(e \mid f) \text{ for each } f \in R_F \text{ and } e \in R_E(f)\}$$
 (6)

- No fertility parameters
- No segmentation parameters
- No reordering parameters

Parameter Estimation

Collecting counts

Goal: determine the number of times phrase \bar{f} translates to phrase \bar{e} in corpus D

- We have the word alignments in *D* (we use them to extract phrase pairs)
- The phrase extraction algorithm gives us a list of phrase pairs occurring in D
- We calculate how many times (\bar{e}, \bar{f}) occurs in this list

Maximum likelihood estimates

Let $C(\bar{t} \to \bar{e}; D)$ be the count of (\bar{e}, \bar{t}) in D. Then, we define the MLE estimates as:

$$\hat{P}(\bar{e} \mid \bar{f}) = \frac{C(\bar{f} \to \bar{e}; D)}{\sum_{\bar{e}' \in R_{\bar{E}}(\bar{f})} C(\bar{f} \to \bar{e}'; D)}$$
(7)

Collecting Counts

Example

$$\hat{P}(cd \mid ab) = ?$$

Collecting Counts

Example

$$\hat{P}(cd \mid ab) = \frac{3}{6}$$

Collecting Counts: Alternative Method

b

Idea

Given a sentence pair and the corresponding word alignment A:

- Consider all the possible phrase alignments consistent with A
- Assume that all have the same, uniform probability
- Calculate the expected counts

Example

 $\hat{P}(cd \mid ab) = ?$

a b

d

Collecting Counts: Alternative Method

EM

We can extend this further:

- For each sentence pair, we have a set of possible phrase alignments
- We can assume that they are uniformly distributed, as before
- We can also use the phrase translation parameters to determine the a posteriori probabilities of these alignments according to the phrase-based translation model

This leads to Expectation-Maximization for the phrase-based model.

Collecting Counts

For the practical sessions

- The first method (collecting counts stemming from the phrase pair extraction algorithm) is somewhat ad-hoc
- But it's the simplest one so we are going to use it anyway

In 2019

Decoding

Given:

- Phrase-based translation model
- Language n-gram model
- Input sentence to translate

Task:

- Determine the most probable translation
- Computationally hard, hence special approximation techniques