
Statistical Machine Translation
Homework 3

To be sent (pdf, Zip) to waszczuk@phil.hhu.de by 04.12.2018.

Exercise 1 - Practice
This exercise directly follows the one from Homework 2. You can use your own solution
or the one provided in the code for Homework 3. Download the archive (Eclipse project
as Zip file) and save it. Start Eclipse and import the zip file as existing project. At the
end of the session, you can export your project as zip archive and keep a copy of it
(email, USB).
This exercise consists of several small tasks, which are easier to carry out in the given

order. The Main class is de.hhu.phil.smt.lm.Uebung3. It already contains a lot of code.
The output that this code produces should make sense after you solved the exercises.

1a
The method score calculates the probablility that the (Bigram-)model
de.hhu.phil.smt.lm.BigramModel assigns to a sentence. Your first task is to imple-
ment a method scoreFile, which reads a file with test sentences and calculates their
probability, assuming that the individual sentences are mutually independent.
Please use data/train.de.tok.50.t50 (50 sentences) as test data. For training you

can use as previously data/train.de.tok.50.h1000 (1000 sentences), or
data/train.de.tok.50.h500000 with 500.000 training sentences.

1b
Most likely, you encountered a problem while doing exercise (1a): The probabilities get
so small by multiplying that the computer can no longer represent them. Therefore, in
practice, log-probabilities (log for logarithm) are used instead of the „bare “probabi-
lities p = exp(log p)). So, for example,

log P̂Add1(wi | wi−1) = log C(wi−1wi) + 1
C(wi−1) + |V |

1

Usually the natural logarithm with base e is used. The base of the logarithm is actually
not important as long as it is used consistently.
Be careful: when dealing with log-probabilities, the following calculation rule is essen-

tial:
log(a · b) = log a+ log b

This means that when we multiply probabilities, we need to add log-probabilities.
Implement the method logScore, which returns the log-probability of a model for a

test sentence, and similarly logScoreFile for a test corpus. Java provides a method to
calculate natural logarithms: Math.log(double d).

2
For Trigram-models we assume that:

P (wi | w1, . . . , wi−1) = P (wi | wi−2, wi−1)

The maximum likelihood estimation of the parameters with Add-One Smoothing is ac-
cordingly

P̂ (wi | wi−2, wi−1) = C(wi−2wi−1wi) + 1
C(wi−2wi−1) + |V |

Implement a Trigram-model with Add-One Smoothing as for bigram-model. Some
parts are already written in de.hhu.smt.lm.Trigram Model. The missing parts are
marked with TODO. 1 Treat unfamiliar words like in Homework 2.

3
Evaluation of the quality of the model. As a measure for the evaluation of language
models, we often use perplexity of the language model in terms of test data w of
length n. This is defined as

PPLM,w = P (w1 . . . wn)−1/n

= exp[− 1
n

n∑
i=1

logP (wi|h)]

where P is the probability which the language model assigns to the sequence w. h
(history) represents the (N-1) previous words of wi depending on the N-gram model,
e.g. wi−1 in a bigram model. The smaller the perplexity, the better the language model.2
Implement a method to calculate the perplexity of a language model in function of a

text corpus: de.hhu.phil.smt.SMT.perplexity(). The challenge here is that perplexity
is defined in terms of a single sequence w, while our test corpus is clearly a set of such
sequences. This can be overcome by:

1You can also write the trigram language model from scratch. But your model has to implement, as
the bigram model, the interface de.hhu.phil.smt.lm.LanguageModel.

2Also, by definition of perplexity, the smaller it is, the higher the probability of w.

2

(a) Considering the test corpus as a single sequence of words consisting of concatenated
test sentences.

(b) Assuming that the individual sentences in this concatenated representation are
mutually independent.

The perplexity of the bigram and the trigram model on the test corpus is calculated
(based on de.hhu.phil.smt.SMT.perplexity()) in the Main class. Are you surprised
by the result?

General note: You do not have to stick exactly to the proposed structure of the code. If
you are not sure, feel free to ask, but in any case, make sure that anyone can understand
your code, for example by using comments. If the original entry point of the program no
longer works, please add a readme file that specifies how the code should be compiled
and executed.

Exercise 2 - Theory
From Homework 2: we estimate bigram probabilities with add-one smoothing with

P̂Add1(wi | wi−1) = C(wi−1wi) + 1
C(wi−1) + |V |

Show that this is an interpolation (weighted sum) of the maximum likelihood estimation
and the uniform distribution estimation (each word in V is equally probable), so that

P̂Add1(wi | wi−1) = λ1P̂ML(wi | wi−1) + λ2
1
|V |

with λ1 + λ2 = 1.

3

