
Statistical Machine Translation
Homework 2

To be sent (pdf, Zip) to waszczuk@phil.hhu.de by 20.11.2018.

Exercise 1 - Practice
The probability of a word sequence w of length n can be decomposed using the chain
rule:

P (w1, w2, . . . , wn) = P (w1) · P (w2 | w1) · P (w3 | w1, w2) · . . . · P (wn | w1, . . . , wn−1)

where wi corresponds to the ith word in w.
A Bigram Language Model is a Markov chain of 1st order. So we assume that:

P (wi | w1, . . . , wi−1) = P (wi | wi−1)

When training a language model, these probabilities are determined (estimated) accor-
ding to data. A familiar and intuitive way to do this is Maximum Likelihood Estimation:

P̂MLE(wi | wi−1) = C(wi−1wi)∑
w∈V C(wi−1w) = C(wi−1wi)

C(wi−1)

(The P has a hat on to show that it is our estimation). C is a function which returns
the frequency of a sequence of words in the training data (count). V is the vocabulary.

Two points make the estimations a bit more complicated:
(1) Unknown words: We cannot make any statement about the words that appear in
the test data, but did not occur in the training data. One solution is to replace words
which rarely occur in the training corpus (once for example) by a specific word (eg
<UNK>) and not to add them to V . Words w /∈ V will also be replaced by <UNK> in the
test data.
(2) unseen bigrams: When a bigram wi−1wi does not occur in the training data, we
have C(wi−1wi) = 0 and therefore P̂ (wi | wi−1) = 0. Consequently, the whole sequence
of words in which the bigram occurs during testing has probability 0. To avoid this, there
are various Smoothing methods that adjust the bigram frequencies that are observed in

1

the training corpus. The simplest (not very good) is Add-One-Smoothing: Each bigram
frequency is increased by one.

P̂Add1(wi | wi−1) = C(wi−1wi) + 1
C(wi−1) + |V |

Your job is to implement such a bigram language model that can cope with both
unknown words and unseen bigrams. The probabilities should be determined based on
the given training data data/train.de.tok.50.h1000. At the end, the output should
be the language model probability for a test set.
As for the previous session, the framework is already in place and is designed to

implement certain methods. Download the code for the exercise and save it locally. The
code is made available as an Eclipse project. Start Eclipse and import the archive file
as an existing project (File → Import → Existing Projects into Workspace → Select
archive file). At the end of the session you should export your project again as a zip file
and keep a copy of it (email, USB).

de.hhu.phil.smt.lm.Uebung2 is the Main-class. It takes no argument. The code
should be compilable and executable. The output shows the number of lines read.
Start by getting familiar with the code and the data. You mainly need to add code
in BigramModel.java. This time the most important data structures are already provi-
ded.

General note: You do not have to stick strictly to the structures suggested in the
code. In any case, make sure that anyone can understand your code, for example, by
commenting it. If the original call of the program no longer works, please add a readme file
that specifies how to compile and execute the code. You can of course use classes from the
Java API (http://docs.oracle.com/javase/8/docs/api/), for example, sets, maps
(associative arrays), etc.

Exercise 2 - Theory
We consider the Markov model specified as follows (we use here the introduced short
forms):

1. P (a|n) = 0, 4,

2. P (b|n) = 0, 6,

3. P (o|n) = 0;

4. P (a|a) = 0, 8,

5. P (b|a) = 0, 1,

6. P (o|a) = 0, 1;

7. P (a|b) = 0, 2,

2

8. P (b|b) = 0, 7,

9. P (o|b) = 0, 1.

In general, we have:

1. P (n|x) = 0 : x ∈ {a, b,o},

2. P (n) = 1 (n is the beginning),

3. P (x|o) = 0 : x ∈ {a, b} (o is the end).

Calculate the probability of the following events in the associated probabilistic lan-
guage:

1. The third letter in a word is an a.

2. A word has length ≥ 3.

Tip: Of course you can calculate this with the sum rule; P(Event 1) is the sum of all
probabilities of all words with a as the third letter (similar for 2). But there are easier
ways!

3

