Deep Learning in NLP

Homework 9

Contents

1. Prologue] 1

[2._Introduction| 1

3. Datasetl 2

[4. Specification| 2
ET Encoderl o 2
H2 Decoderl 3
4.3. alning| 4
M4 TEvaluafionl. 4

[A. Attention-based model 5
AT Encoderl 5
A2 Decoderl o 5

1. Prologue

This homework has a more free-form structure and it is meant to help you learn how to
design your own deep learning models and apply them to novel tasks. While this project
is meant as a homework, we will use the remaining practical sessions to work on it, to
discuss (on Webex most likely) the design of the model, the implementation details, etc.
The remaining topics (MTL, pre-trained embeddings, batching) will still be covered on
Github and/or Twitch.

2. Introduction

The overall goal of the homework is to implement a toy machine translation system based
on a simple variant of the RNN encoder-decoder architecture. This document provides
a specification of the model, so don’t worry if this term doesn’t mean anything to you
yet.

In the remaining of the document, we call an input to the system a source sentence
and an output of the system a target sentence. We denote the source sentence as:

x = (21,22,...,Zp) (1)

where n is the source sentence length and each z; € X, where X is the vocabulary (set
of words) of the source language, and the target sentence as

y =192, Ym) (2)

where m is the target sentence length and each y; € Y, where Y is the vocabulary of
the target language. We thus assume that both sentences are already tokenized.

3. Dataset

As a dataset you can create a toy parallel dataset of several simple (source sentence,
target sentence) pairs. Once the prototype of the model is complete, you may con-
sider switching to a larger dataset (e.g. https://github.com/multi30k/dataset| or
http://www.manythings.org/anki/)) in order to polish and optimize the model and its
implementation.

4. Specification
The encoder-decoder architecture consists of two modules:

e Encoder: module which reads a source sentence and (in its simplest form) trans-
forms it to a single vector

e Decoder: module which takes the vector produced by the encoder and unfolds it
to a target sentence

The two modules are described separately below[]

4.1. Encoder

The encodelﬂ is a neural module which takes a source sentence x on input and encodes
it to a vector representation. There are different ways to implement the encoder, here is
one similar to what we have already seen during the course and which you can replace
later with a more advanced solution if you wish:

1. Embed each input word x; as a dense vector representation e(x;) € R? of size d

2. Apply an LSTM to the resulting sequence (e(z;))7;

! Appendix [A| provides an attention-based extension of the encoder-decoder model. You can optionally
implement it at the end once the basic version of the model works.
2Not to be confused with the Encoder class we use for replacing words/characters/tags/. . . with ints.

https://github.com/multi30k/dataset
http://www.manythings.org/anki/

3. Retrieve the last element of the LSTM output

The second step can be defined in terms of the following recurrent formula:
(hi, Ci) = LSTMCell(e(:C,-), (hi—h Ci—l)) (3)

where hg, ¢ are trainable parameters and LSTMCell is an LSTM computation cell (with
its own set of trainable parameters). The result of the encoder, which represents the
entire source sentence, is (see step 3).

4.2. Decoder

The decoder serves to unfold the vector representation produced by the encoder —

— to a sequence of words. The decoder can be implemented as a recurrent
process which, given the already predicted words 9o, 91, %2, - - - , Ji—1, tries to predict the
next word ¢;. The process ends when either a special end-of-sentence marker is produced,
or when a maximum number of iterations is reached (to avoid infinite recurrence).

The task is to implement the decoder as a variant of LSTME| based on the following
recurrent formula:

(hj, ¢;) = LSTMCell([e'(§i—1); hn:], (hi_y, ¢j_1)) (4)
where:
° is the representation of the source sentence produced by the encoder
. , i.e. the hidden/cell states are initialized to the sum-

mary of the source sentence (note the use of / to distinguish the decoder-related
L c ... from those related to the encoder h;,c;,...)

symbols h;, c;, ..
e o is a special beginning-of-sentence marker
e ¢/(y) is the embedding vector of target word y

e [v;w;...] represents the concatenation of vectors v, w, ...

The next word ¢; is then predicted by selecting the word from the target language
vocabulary Y which maximizes the following probability distribution:

P(y;) = softmax(U,h, + Voe' (§i—1) + W,) (5)

where U,, V,, W, are trainable parameters. Put differently, the formula within softmax
produces a vector of scores, one score per word in the target language, and the word
with the highest score is selected.

3In the |original paper| a custom, more sophisticated variant of RNN was proposed for decoding; here
we propose to use the LSTM gating mechanism, already implemented in PyTorch, for simplicity.

https://pytorch.org/docs/1.6.0/generated/torch.nn.LSTMCell.html?highlight=lstmcell#torch.nn.LSTMCell
https://arxiv.org/pdf/1406.1078.pdf

4.3. Training

The model can be trained to minimize either the cross-entropy loss or the negative log-
likelihood of the predicted distributions P(y;) w.r.t. the actual target words y;. However,
to facilitate the process, ;1 is often replaced by y;—1 in Eq. [4] in order to make the
training process more stable. Put differently, the next word §j; is predicted based on the
word y;_1 that should have been predicted in the previous step, even when y;_1 # §;_1.
Of course this does not apply during decoding proper, where y;_1 is unknown.

4.4. Evaluation

Evaluation of MT systems is beyond the scope of this homework. You can implement
a regular accuracy function and plug it into the training procedure as a sanity check to
make sure that the resulting model does not underfit, but be aware that accuracy is a
very poor measure of translation quality. You should rather enrich the model with a
higher-lever translation method, e.g.

def translate(self, sent: List[Word]) -> List[Word]:

(where Word = str) and test it manually. Do not expect an amazing translation quality,
though, this is just a toy system! It could be nevertheless extended with more advanced
features, e.g. attention (see App. , BERT encoder, etc.

A. Attention-based model

This section describes an optional extension of the encoder-decoder architecture based
on the mechanism of attentionl]

A.1. Encoder

In the attention-based variant of the architecture, the encoder produces a sequence of
contextualized embeddings (h;)} rather than a single vector. Put differently, the last
step of the encoder (see Sec. can be discarded, since the output of encoding should
contain the (contextualized) vector representations of all input words. Besides, one may
use a BiLSTM, or even BERT to produce (h;)}.

A.2. Decoder
On the decoder side:

(B}, ;) = LSTMCe1l([e(Gi—1); hil, (i 1, ¢iy)) (6)

79

where h; is a projection of the encoded source sentence (hy, ..., h,) on the target position
1 along a latent word-level alignment function a:

hi =" aijh; (7)
j=1

The alignment function itself is defined as:

o exp(eij;)
i = T explen)’)

where
eij = a(hi_y, hy). (9)

a is an alignment model which scores how well the inputs around position j and the
output at position ¢ match. In practice, a can be defined asﬂ

a(hi_y, hj) = vy tanh(Wohi_y + Uahy), (10)

where v,, Wy, U, are all learnable parameters of the model.
In the alignment-based model, the next word g; is predicted by selecting the word
which maximizes the following probability distribution:

A~

P(y;) = softmax(U,h; + Voe' (§i—1) + Woh;) (11)

4As proposed in this paper, if you are curious.
5See 'this paper| for other ways of implementing the alignment model a.

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1508.04025.pdf

	Prologue
	Introduction
	Dataset
	Specification
	Encoder
	Decoder
	Training
	Evaluation

	Attention-based model
	Encoder
	Decoder

