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Abstract

We derive variants of the fertility based
models IBM-3 and IBM-4 that, while
maintaining their zero and first order pa-
rameters, are nondeficient. Subsequently,
we proceed to derive a method to com-
pute a likely alignment and its neighbors
as well as give a solution of EM training.
The arising M-step energies are non-trivial
and handled via projected gradient ascent.

Our evaluation on gold alignments shows
substantial improvements (in weighted F-
measure) for the IBM-3. For the IBM-
4 there are no consistent improvements.
Training the nondeficient IBM-5 in the
regular way gives surprisingly good re-
sults.

Using the resulting alignments for phrase-
based translation systems offers no clear
insights w.r.t. BLEU scores.

1 Introduction

While most people think of the translation and
word alignment models IBM-3 and IBM-4 as in-
herently deficient models (i.e. models that assign
non-zero probability mass to impossible events),
in this paper we derive nondeficient variants main-
taining their zero order (IBM-3) and first order
(IBM-4) parameters. This is possible as IBM-3
and IBM-4 are very special cases of general log-
linear models: they are properly derived by the
chain rule of probabilities. Deficiency is only in-
troduced by ignoring a part of the history to be
conditioned on in the individual factors of the
chain rule factorization. While at first glance this
seems necessary to obtain zero and first order de-

Figure 1: Plot of the negative log. likelihoods
(the quantity to be minimized) arising in training
deficient and nondeficient models (for Europarl
German | English, training scheme 15H53545).
1/3/4=IBM-1/3/4, H=HMM, T=Transfer iteration.
The curves are identical up to iteration 11.
Iteration 11 shows that merely 5.14% of the

(HMM) probability mass are covered by the
Viterbi alignment and its neighbors. With deficient
models (and deficient empty words) the final neg-
ative log likelihood is higher than the initial HMM
one, with nondeficient models it is lower than for
the HMM, as it should be for a better model.

pendencies, we show that with proper renormal-
ization all factors can be made nondeficient.

Having introduced the model variants, we pro-
ceed to derive a hillclimbing method to compute
a likely alignment (ideally the Viterbi alignment)
and its neighbors. As for the deficient models, this
plays an important role in the E-step of the sub-
sequently derived expectation maximization (EM)
training scheme. As usual, expectations in EM are
approximated, but we now also get non-trivial M-
step energies. We deal with these via projected
gradient ascent.



The downside of our method is its resource con-
sumption, but still we present results on corpora
with 100.000 sentence pairs. The source code of
this project is available in our word alignment soft-
ware RegAligner1, version 1.2 and later.

Figure 1 gives a first demonstration of how
much the proposed variants differ from the stan-
dard models by visualizing the resulting negative
log likelihoods2, the quantity to be minimized in
EM-training. The nondeficient IBM-4 derives a
lower negative log likelihood than the HMM, the
regular deficient variant only a lower one than
the IBM-1. As an aside, the transfer iteration
from HMM to IBM3 (iteration 11) reveals that
only 5.14% of the probability mass3 are preserved
when using the Viterbi alignment and its neighbors
instead of all alignments.

Indeed, it is widely recognized that – with
proper initialization – fertility based models out-
perform sequence based ones. In particular, se-
quence based models can simply ignore a part of
the sentence to be conditioned on, while fertility
based models explicitly factor in a probability of
words in this sentence to have no aligned words
(or any other number of aligned words, called the
fertility). Hence, it is encouraging to see that the
nondeficient IBM-4 indeed derives a higher likeli-
hood than the sequence based HMM.

Related Work Today’s most widely used mod-
els for word alignment are still the models IBM
1-5 of Brown et al. (1993) and the HMM of Vo-
gel et al. (1996), thoroughly evaluated in (Och
and Ney, 2003). While it is known that fertility-
based models outperform sequence-based ones,
the large bulk of word alignment literature follow-
ing these publications has mostly ignored fertility-
based models. This is different in the present paper
which deals exclusively with such models.

One reason for the lack of interest is surely that
computing expectations and Viterbi alignments for
these models is a hard problem (Udupa and Maji,
2006). Nevertheless, computing Viterbi align-

1https://github.com/Thomas1205/RegAligner,
for the reported results we used a slightly earlier version.

2Note that the figure slightly favors IBM-1 and HMM as
for them the length J of the foreign sequence is assumed to
be known whereas IBM-3 and IBM-4 explicitly predict it.

3This number regards the corpus probability as in (9) to
the power of 1/S, i.e. the objective function in maximum
likelihood training. The number is not entirely fair as align-
ments where more than half the words align to the empty
word are assigned a probability of 0. Still, this is an issue
only for short sentences.

ments for the IBM-3 has been shown to often
be practicable (Ravi and Knight, 2010; Schoen-
emann, 2010).

Much work has been spent on HMM-based
formulations, focusing on the computationally
tractable side (Toutanova et al., 2002; Sumita et
al., 2004; Deng and Byrne, 2005). In addition,
some rather complex models have been proposed
that usually aim to replace the fertility based mod-
els (Wang and Waibel, 1998; Fraser and Marcu,
2007a).

Another line of models (Melamed, 2000; Marcu
and Wong, 2002; Cromières and Kurohashi, 2009)
focuses on joint probabilities to get around the
garbage collection effect (i.e. that for conditional
models, rare words in the given language align to
too many words in the predicted language). The
downside is that these models are computationally
harder to handle.

A more recent line of work introduces various
forms of regularity terms, often in the form of
symmetrization (Liang et al., 2006; Graça et al.,
2010; Bansal et al., 2011) and recently by using
L0 norms (Vaswani et al., 2012).

2 The models IBM-3, IBM-4 and IBM-5

We begin with a short review of fertility-based
models in general and IBM-3, IBM-4 and IBM-
5 specifically. All are due to (Brown et al., 1993)
who proposed to use the deficient models IBM-3
and IBM-4 to initialize the nondeficient IBM-5.

For a foreign sentence f = fJ1 = (f1, . . . , fJ)
with J words and an English one e = eI1 =
(e1, . . . , eI) with I words, the (conditional) proba-
bility p(fJ1 |eI1) of getting the foreign sentence as a
translation of the English one is modeled by intro-
ducing the word alignment a as a hidden variable:

p(fJ1 |eI1) =
∑
a

p(fJ1 ,a|eI1)

All IBM models restrict the space of alignments
to those where a foreign word can align to at most
one target word. The resulting alignment is then
written as a vector aJ1 , where each aj takes integral
values between 0 and I , with 0 indicating that fj
has no English correspondence.

The fertility-based models IBM-3, IBM-4
and IBM-5 factor the (conditional) probability
p(fJ1 , a

J
1 |eI1) of obtaining an alignment and a

translation given an English sentence according to
the following generative story:



1. For i = 1, 2, . . . , I , decide on the number Φi

of foreign words aligned to ei. This number
is called the fertility of ei. Choose with prob-
ability p(Φi|eI1,Φ

i−1
1 ) = p(Φi|ei).

2. Choose the number Φ0 of unaligned words
in the (still unknown) foreign sequence.
Choose with probability p(Φ0|eI1,ΦI

1) =
p(Φ0|

∑I
i=1 Φi). Since each foreign word be-

longs to exactly one English position (includ-
ing 0), the foreign sequence is now known to
be of length J =

∑I
i=0 Φi.

3. For each i = 1, 2, . . . , I , and k = 1, . . . ,Φi

decide on
(a) the identity fi,k of the next foreign
word aligned to ei. Choose with probability
p(fi,k|eI1,ΦI

0,d
i−1
1 , di,1, . . . , di,k−1, fi,k) =

p(fi,k|ei), where di comprises all di,k for
word i (see point b) below) and fi,k com-
prises all foreign words known at that point.
(b) the position di,k of the just gener-
ated foreign word fi,k, with probability
p(di,k|eI1,ΦI

0,d
i−1
1 , di,1, . . . , di,k−1, fi,k, fi,k)

= p(di,k|ei,di−1
1 , di,1, . . . , di,k−1, fi,k, J).

4. The remaining Φ0 open positions in the for-
eign sequence align to position 0. Decide
on the corresponding foreign words with
p(fd0,k |e0), where e0 is an artificial “empty
word”.

To model the probability for the number of un-
aligned words in step 2, each of the

∑I
i=1 Φi prop-

erly aligned foreign words generates an unaligned
foreign word with probability p0, resulting in

p
(
Φ0

∣∣∣ I∑
i=1

Φi

)
=

 I∑
i=1

Φi

Φ0

pΦi
0 (1−p0)(

∑
i Φi)−Φ0 ,

with a base probability p0 and the combinato-

rial coefficients
( n
k

)
= n!

k!(n−k)! , where n! =∏n
k=1 k denotes the factorial of n. The main dif-

ference between IBM-3, IBM-4 and IBM-5 is the
choice of probability model in step 3 b), called a
distortion model. The choices are now detailed.

2.1 IBM-3
The IBM-3 implements a zero order distortion
model, resulting in

p(di,k|i, J) .

Since most of the context to be conditioned on is
ignored, this allows invalid configurations to occur
with non-zero probability: some foreign positions
can be chosen several times, while others remain
empty. One says that the model is deficient. On
the other hand, the model for p(Φ0|

∑I
i=1 Φi) is

nondeficient, and in training this often results in
very high probabilities p0. To prevent this it is
common to make this model deficient as well (Och
and Ney, 2003), which improves performance im-
mensely and gives much better results than simply
fixing p0 in the original model.

As for each i the di,k can appear in any order
(i.e. need not be in ascending order), there are∏I
i=1 Φi! ways to generate the same alignment aJ1

(where the Φi are the fertilities induced by aJ1 ).
In total, the IBM-3 has the following probability
model:

p(fJ1 , a
J
1 |eI1) =

J∏
j=1

[
p(fj |eaj ) · p(j|aj , J)

]
(1)

· p
(

Φ0|
I∑
i=1

Φi

)
·
I∏
i=1

Φi! p(Φi|ei) .

Reducing the Number of Parameters While
using non-parametric models p(j|i, J) is conve-
nient for closed-form M-steps in EM training,
these parameters are not very intuitive. Instead,
in this paper we use the parametric model

p(j|i, J) =
p(j|i)∑J
j=1 p(j|i)

(2)

with the more intuitive parameters p(j|i). The
arising M-step energy is addressed by projected
gradient ascent (see below).

These parameters are also used for the nondefi-
cient variants. Using the original non-parametric
ones can be handled in a very similar manner to
the methods set forth below.

2.2 IBM-4

The distortion model of the IBM-4 is a first order
one that generates the di,k of each English position
i in ascending order (i.e. for 1 < k ≤ Φi we have
di,k > di,k−1). There is then a one-to-one cor-
respondence between alignments aJ1 and (valid)
distortion parameters (di,k)i=1,...,I, k=1,...,Φi

and
therefore no longer a factor of

∏I
i=1 Φi! .

The IBM-4 has two sub-distortion models, one
for the first aligned word (k = 1) of an English po-
sition and one for all following words (k > 1, only



if Φi > 1). For position i, let [i]=arg max{i′|1≤
i′ < i,Φi′ > 0} denote4 the closest preceding En-
glish word that has aligned foreign words. The
aligned foreign positions of [i] are combined into
a center position �[i], the rounded average of the
positions. Now, the distortion probability for the
first word (k = 1) is

p=1(di,1|�[i],A(fi,1),B(e[i]), J) ,

where A gives the word class of a foreign word
and B the word class of an English word (there are
typically 50 classes per language, derived by ma-
chine learning techniques). The probability is fur-
ther reduced to a dependency on the difference of
the positions, i.e. p=1(di,1−�[i] | A(fi,1),B(e[i])).
For k > 1 the model is

p>1(di,k|di,k−1,A(fi,k), J) ,

which is likewise reduced to p>1(di,k −
di,k−1 | A(fi,k)). Note that in both difference-
based formulations the dependence on J has to
be dropped to get closed-form solutions of the
M-step in EM training, and Brown et al. note
themselves that the IBM-4 can place words before
the start and after the end of the sentence.

Reducing Deficiency In this paper, we also in-
vestigate the effect of reducing the amount of
wasted probability mass by enforcing the depen-
dence on J by proper renormalization, i.e. using

p=1(j|j′,A(fi,1),B(e[i]), J) = (3)

p=1(j − j′|A(fi,1),B(e[i]))∑J
j′′=1 p=1(j′′ − j′|A(fi,1),B(e[i]))

,

for the first aligned word and

p>1(j|j′,A(fi,k), J) = (4)

p>1(j − j′ | A(fi,k))∑J
j′′=1 p>1(j′′ − j′ | A(fi,k))

for all following words, again handling the M-step
in EM training via projected gradient ascent. With
this strategy words can no longer be placed out-
side the sentence, but a lot of probability mass is
still wasted on configurations where at least one
foreign (or predicted) position j aligns to two or
more positions i, i′ in the English (or given) lan-
guage (and consequently there are more unaligned

4If the set is empty, instead a sentence start probability
is used. Note that we differ slightly in notation compared to
(Brown et al., 1993).

source words than the generated Φ0). Therefore,
here, too, the probability for Φ0 has to be made
deficient to get good performance.

In summary, the base model for the IBM-4 is:

p(fJ1 , a
J
1 |eI1) = p

(
Φ0|

I∑
i=1

Φi

)
(5)

·
J∏
j=1

p(fj |eaj ) ·
I∏
i=1

p(Φi|ei)

·
∏

i:Φi>0

[
p=1(di,1 −�[i]|A(fi,1),B(e[i]))

·
Φi∏
k=2

p>1(di,k − di,k−1|A(fi,k))
]

,

where empty products are understood to be 1.

2.3 IBM-5
We note in passing that the distortion model of the
IBM-5 is nondeficient and has parameters for fill-
ing the nth open gap in the foreign sequence given
that there are N positions to choose from – see
the next section for exactly what positions one can
choose from. There is also a dependence on word
classes for the foreign language.

This is neither a zero order nor a first order de-
pendence, and in (Och and Ney, 2003) the first or-
der model of the IBM-4, though deficient, outper-
formed the IBM-5. The IBM-5 is therefore rarely
used in practice. This motivated us to instead re-
formulate IBM-3 and IBM-4 as nondeficient mod-
els. In our results, however, the IBM-5 gave sur-
prisingly good results and was often superior to all
variants of the IBM-4.

3 Nondeficient Variants of IBM-3 and
IBM-4

From now on we always enforce that for each po-
sition i the indices di,k are generated in ascending
order (di,k > di,k−1 for k > 1). A central con-
cept for the generation of di,k in step 3(b) is the
set of positions in the foreign sequence that are
still without alignment. We denote the set of these
positions by

Ji,k,J = {1, . . . , J} − {di,k′ | 1 ≤ k′ < k}
−{di′,k′ | 1 ≤ i′ < i, 1 ≤ k′ ≤ Φi′}

where the dependence on the various di′,k′ is not
made explicit in the following.

It is tempting to think that in a nondeficient
model all members of Ji,k,J can be chosen for



di,k, but this holds only Φi = 1. Otherwise, the
requirement of generating the di,k in ascending or-
der prevents us from choosing the (Φi−k) largest
entries inJi,k,J . For k > 1 we also have to remove
all positions smaller than di,k−1.

Let J Φi
i,k,J denote the set where these positions

have been removed. With that, we can state the
nondeficient variants of IBM-3 and IBM-4.

3.1 Nondeficient IBM-3
For the IBM-3, we define the auxiliary quantity

q(di,k = j | i,J Φi
i,k,J) =

{
p(j|i) if j ∈ J Φi

i,k,J

0 else ,

where we use the zero order parameters p(j|i) we
also use for the standard (deficient) IBM-3, com-
pare (2). To get a nondeficient variant, it remains
to renormalize, resulting in

p(di,k = j|i,J Φi
i,k,J) =

q(j|i,J Φi
i,k,J)∑J

j=1 q(j|i,J
Φi
i,k,J)

. (6)

Further, note that the factors Φi! now have to
be removed from (1) as the di,k are generated in
ascending order. Lastly, here we use the original
nondeficient empty word model p(Φ0|

∑I
i=1 Φi),

resulting in a totally nondeficient model.

3.2 Nondeficient IBM-4
With the notation set up, it is rather straightfor-
ward to derive a nondeficient variant of the IBM-
4. Here, there are the two cases k = 1 and k > 1.
We begin with the case k = 1. Abbreviating
α = A(fi,1) and β = B(e[i]), we define the auxil-
iary quantity

q=1(di,1 = j|�[i], α, β,J Φi
i,k,J) = (7){

p=1(j −�[i]|α, β) if j ∈ J Φi
i,k,J

0 else ,

again using the - now first order - parameters
of the base model. The nondeficient distribution
p=1(di,1 = j|�[i], α, β,J Φi

i,k,J) is again obtained
by renormalization.

For the case k > 1, we abbreviate α = A(fi,k)
and introduce the auxiliary quantity

q>1(di,k = j|di,k−1, α,J Φi
i,k,J) = (8){

p>1(j − di,k−1|α) if j ∈ J Φi
i,k,J

0 else ,

from which the nondeficient distribution
p>1(di,k=j|di,k−1, α,J Φi

i,k,J) is again obtained by
renormalization.

4 Training the New Variants

For the task of word alignment, we infer the pa-
rameters of the models using the maximum likeli-
hood criterion

max
θ

S∏
s=1

pθ(fs|es) (9)

on a set of training data (i.e. sentence pairs s =
1, . . . , S). Here, θ comprises all base parameters
of the respective model (e.g. for the IBM-3 all
p(f |e), all p(Φ, e) and all p(j|i) ) and pθ signifies
the dependence of the model on the parameters.
Note that (9) is truly a constrained optimization
problem as the parameters θ have to satisfy a num-
ber of probability normalization constraints.

When pθ(·) denotes a fertility based model the
resulting problem is a non-concave maximization
problem with many local minima and no (known)
closed-form solutions. Hence, it is handled by
computational methods, which typically apply the
logarithm to the above function.

Our method of choice to attack the maximum
likelihood problem is expectation maximization
(EM), the standard in the field, which we explain
below. Due to non-concaveness the starting point
for EM is of extreme importance. As is common,
we first train an IBM-1 and then an HMM before
proceeding to the IBM-3 and finally the IBM-4.

As in the training of the deficient IBM-3 and
IBM-4 models, we approximate the expectations
in the E-step by a set of likely alignments, ideally
centered around the Viterbi alignment, but already
for the regular deficient variants computing it is
NP-hard (Udupa and Maji, 2006). A first task is
therefore to compute such a set. This task is also
needed for the actual task of word alignment (an-
notating a given sentence pair with an alignment).

4.1 Alignment Computation
For computing alignments, we use the common
procedure of hillclimbing where we start with an
alignment, then iteratively compute the probabili-
ties of all alignments differing by a move or a swap
(Brown et al., 1993) and move to the best of these
if it beats the current alignment.

Since we cannot ignore parts of the history and
still get a nondeficient model, computing the prob-
abilities of the neighbors cannot be handled in-
crementally (or rather only partially, for the dic-
tionary and fertility models). While this does in-
crease running times, in practice the M-steps take
longer than the E-steps.



For self-containment, we recall here that for an
alignment aJ1 applying the move aJ1 [j→ i] results
in the alignment âJ1 defined by âj = i and âj′=aj′

for j′ 6= j. Applying the swap aJ1 [j1 ↔ j2] results
in the alignment âJ1 defined by âj1 =aj2 , âj2 =aj1
and âj′ = aj′ elsewhere. If aJ1 is the alignment
produced by hillclimbing, the move matrix m ∈
IRJ×I+1 is defined bymj,i being the probability of
aJ1 [j → i] as long as aj 6= i, otherwise 0. Likewise
the swap matrix s ∈ IRJ×J is defined as sj1,j2
being the probability of aJ1 [j1 ↔ j2] for aj1 6=aj2 ,
0 otherwise. The move and swap matrices are used
to approximate expectations in EM training (see
below).

4.2 Parameter Update
Naive Scheme It is tempting to account for the
changes in the model in hillclimbing, but to oth-
erwise use the regular M-step procedures (closed
form solution when not conditioning on J for the
IBM-4 and for the non-parametric IBM-3, other-
wise projected gradient ascent) for the deficient
models. However, we verified that this is not a
good idea: not only can the likelihood go down
in the process (even if we could compute expecta-
tions exactly), but these schemes also heavily in-
crease p0 in each iteration, i.e. the same problem
Och and Ney (2003) found for the deficient mod-
els. There is therefore the need to execute the M-
step properly, and when done the problem is in-
deed resolved.

Proper EM The expectation maximization
(EM) framework (Dempster et al., 1977; Neal and
Hinton, 1998) is a class of template procedures
(rather than a proper algorithm) that iteratively
requires solving the task

max
θk

S∑
s=1

∑
as

pθk−1
(as|fs, es) log

(
pθk(fs,as|es)

)
(10)

by appropriate means. Here, θk−1 are the parame-
ters from the previous iteration, while θk are those
derived in the current iteration. Of course, here
and in the following the normalization constraints
on θ apply, as already in (9). On explicit request
of a reviewer we give a detailed account for our
setting here. Readers not interested in the details
can safely move on to the next section.

Details on EM For the corpora occurring in
practice, the function (10) has many more terms
than there are atoms in the universe. The trick is

that pθk(fs,as|es) is a product of factors, where
each factor depends on very few components of
θk only. Taking the logarithm gives a sum of
logarithms, and in the end we are left with the
problem of computing the weights of each factor,
which turn out to be expectations. To apply this
to the (deficient) IBM-3 model with parametric
distortion we simplify pθk−1

(as|fs, es) = p(as)

and define the counts nf,e(as) =
∑Js

j=1 δ(f
s
j , f) ·

δ(esasj
, e), nΦ,e(as) =

∑Is
i=1 δ(e

s
i , e) ·δ(Φi(as),Φ)

and nj,i(as) = δ(asj , i). We also use short hand
notations for sets, e.g. {p(f |e)} is meant as the
set of all translation probabilities induced by the
given corpus. With this notation, after reordering
the terms problem (10) can be written as

max
{p(f |e)},{p(Φ|e)},{p(j|i)}

(11)

∑
e,f

[ S∑
s=1

∑
as

p(as)nf,e(as)
]
log
(
p(f |e)

)
+
∑
e,Φ

[ S∑
s=1

∑
as

p(as)nΦ,e(as)
]
log
(
p(Φ, e)

)
+
∑
i,j

[ S∑
s=1

∑
as

p(as)nj,i(as)
]
log
(
p(j|i, J)

)
.

Indeed, the weights in each line turn out to be
nothing else than expectations of the respective
factor under the distribution pθk−1

(as|fs, es) and
will henceforth be written as wf,e, wΦ,e and wj,i,J .
Therefore, executing an iteration of EM requires
first calculating all expectations (E-step) and then
solving the maximization problems (M-step). For
models such as IBM-1 and HMM the expectations
can be calculated efficiently, so the enormous sum
of terms in (10) is equivalently written as a man-
ageable one. In this case it can be shown5 that
the new θk must have a higher likelihood (9) than
θk−1 (unless a stationary point is reached). In fact,
any θ that has a higher value in the auxiliary func-
tion (11) than θk−1 must also have a higher like-
lihood. This is an important background for para-
metric models such as (2) where the M-step cannot
be solved exactly.

For IBM-3/4/5 computing exact expectations is
intractable (Udupa and Maji, 2006) and approx-
imations have to be used (in fact, even comput-
ing the likelihood for a given θ is intractable). We

5See e.g. the author’s course notes (in German), currently
http://user.phil-fak.uni-duesseldorf.de/
˜tosch/downloads/statmt/wordalign.pdf.



use the common procedure based on hillclimbing
and the move/swap matrices. The likelihood is not
guaranteed to increase but it (or rather its approx-
imation) always did in each of the five run itera-
tions. Nevertheless, the main advantage of EM is
preserved: problem (11) decomposes into several
smaller problems, one for each probability distri-
bution since the parameters are tied by the nor-
malization constraints. The result is one problem
for each e involving all p(f |e), one for each e in-
volving all p(Φ|e) and one for each i involving all
p(j|i).

The problems for the translation probabilities
and the fertility probabilities yield the known stan-
dard update rules. The most interesting case is the
problem for the (parametric) distortion models. In
the deficient setting, the problem for each i is

max
{p(j|i)}

∑
J

wi,j,J log

(
p(j|i)∑J
j′=1 p(j

′|i)

)
In the nondeficient setting, we now drop the sub-
scripts i, k, J and the superscript Φ from the sets
defined in the previous sections, i.e. we write J
instead of J Φ

i,k,J . The M-step problem is then

max
{p(j|i)}

Ei =
∑
j

∑
J :j∈J

wj,i,J log
(
p(j|i,J )

)
,

where wj,i,J (with j ∈ J ) is the expectation for
aligning j to iwhen one can choose among the po-
sitions inJ , and with p(j|i,J ) as in (6). In princi-
ple there is an exponential number of expectations
wj,i,J . However, since we approximate expecta-
tions from the move and swap matrices, and hence
by O((I + J) · J) alignments per sentence pair,
in the end we get a polynomial number of terms.
Currently we only consider alignments with (ap-
proximated) pθk−1

(as|fs, es) > 10−6.
Importantly, the fact that we get separate M-step

problems for different i allows us to reduce mem-
ory consumption by using refined data structures
when storing the expectations.

For both the deficient and the nondeficient vari-
ants, the M-step problems for the distortion pa-
rameters p(j|i) are non-trivial, non-concave and
have no (known) closed form solutions. We ap-
proach them via the method of projected gradient
ascent (PGA), where the gradient for the nondefi-
cient problem is

∂Ei
∂p(j|i)

=
∑
J :j∈J

[
wj,J
p(j|i)

−
∑

j′∈J wj′,J∑
j′∈J p(j

′|i)

]
.

When running PGA we guarantee that the result-
ing {p(j|i)} has a higher function value Ei than
the input ones (unless a stationary point is input).
We stop when a cutoff criterion indicates a local
maximum or 250 iterations are used up.

Projected Gradient Ascent This method is
used in a couple of recent papers, notably (Schoen-
emann, 2011; Vaswani et al., 2012) and is briefly
sketched here for self-containment (see those pa-
pers for more details). To solve a maximization
problem

max
p(j|i)≥0,

∑
j p(j|i)=1

Ei({p(j|i)})

for some (differentiable) function Ei(·), one iter-
atively starts at the current point {pk(j|i)}, com-
putes the gradient ∇Ei({pk(j|i)}) and goes to the
point

q(j|i) = pk(j|i) + α∇Ei(pk(j|i)) , j = 1, . . . , J

for some step-length α. This point is generally
not a probability distribution, so one computes the
nearest probability distribution

min
q′(j|i)≥0,

∑
j q
′(j|i)=1

J∑
j=1

(
q′(j|i)− q(j|i)

)2
,

a step known as projection which we solve with
the method of (Michelot, 1986). The new dis-
tribution {q′(j|i)} is not guaranteed to have a
higher Ei(·), but (since the constraint set is a con-
vex one) a suitable interpolation of {pk(j|i)} and
{q′(j|i)} is guaranteed to have a higher value (un-
less {pk(j|i)} is a local maximum or minimum
of Ei(·)). Such a point is computed by back-
tracking line search and defines the next iterate
{pk+1(j|i)}.

IBM-4 When moving from the IBM-3 to the
IBM-4, only the last line in (11) changes. In
the end one gets two new kinds of problems, for
p=1(·) and p>1(·). For p=1(·) we have one prob-
lem for each foreign class α and each English class
β, of the form

max
{p=1(j|j′,α,β)}

∑
j,j′,J

wj,j′,J,α,β log
(
p=1(j|j′, α, β, J)

)
for reduced deficiency (with p=1(j|j′, α, β, J) as
in (3) ) and of the form

max
{p=1(j|j′,α,β)}

∑
j,j′,J

wj,j′,J ,α,β log
(
p=1(j|j′, α, β,J )

)



Model Degree of Deficiency De|En En|De Es|En En|Es
HMM nondeficient (our) 73.8 77.6 77.4 76.1
IBM-3 full (GIZA++) 74.2 76.5 74.3 74.5
IBM-3 full (our) 75.6 79.2 75.2 73.7
IBM-3 nondeficient (our) 76.1 79.8 76.8 75.5
IBM-4, 1 x 1 word class full (GIZA++) 77.9 79.4 78.6 78.4
IBM-4, 1 x 1 word class full (our) 76.1 81.5 77.8 78.0
IBM-4, 1 x 1 word class reduced (our) 77.2 80.6 77.9 78.3
IBM-4, 1 x 1 word class nondeficient (our) 77.6 81.5 80.0 78.4
IBM-4, 50 x 50 word classes full (GIZA++) 78.6 80.4 79.3 79.3
IBM-4, 50 x 50 word classes full (our) 78.0 82.4 79.2 79.4
IBM-4, 50 x 50 word classes reduced (our) 78.5 82.1 79.2 79.0
IBM-4, 50 x 50 word classes nondeficient (our) 77.9 82.5 79.7 78.2
IBM-5, 50 word classes nondeficient (GIZA++) 79.4 81.1 80.0 79.5
IBM-5, 50 word classes nondeficient (our) 79.2 82.7 79.7 79.5

Table 1: Alignment accuracy (weighted F-measure times 100, α = 0.1) on Europarl with 100.000
sentence pairs. Reduced deficiency means renormalization as in (3) and (4), so that words cannot be
placed before or after the sentence. For the IBM-3, the nondeficient variant is clearly best. For the
IBM-4 it is better in roughly half the cases, both with and without word classes.

for the nondeficient variant, with
p=1(j|j′, α, β,J ) based on (7).

For p>1(·) we have one problem per foreign
class α, of the form

max
{p>1(j|j′,α)}

∑
j,j′,J

wj,j′,J,α log
(
p>1(j|j′, α, J)

)
for reduced deficiency, with p>1(j|j′, α, J) based
on (4), and for the nondeficient variant it has the
form

max
{p>1(j|j′,α)}

∑
j,j′,J

wj,j′,J ,α log
(
p>1(j|j′, α,J )

)
,

with p>1(j|j′, α,J ) based on (8). Calculating the
gradients is analogous to the IBM-3.

5 Experiments

We test the proposed methods on subsets of the
Europarl corpus for German and English as well
as Spanish and English, using lower-cased cor-
pora. We evaluate alignment accuracies on gold
alignments6 in the form of weighted F-measures
with α=0.1, which performed well in (Fraser and
Marcu, 2007b). In addition we evaluate the effect
on phrase-based translation on one of the tasks.

We implement the proposed methods in our
own framework RegAligner rather than GIZA++,

6from (Lambert et al., 2005) and from
http://user.phil-fak.uni-duesseldorf.de/
˜tosch/downloads.html.

which is only rudimentally maintained. Therefore,
we compare to the deficient models in our own
software as well as to those in GIZA++.

We run 5 iterations of IBM-1, followed by 5
iterations of HMM, 5 of IBM-3 and finally 5 of
IBM-4. The first iteration of the IBM-3 collects
counts from the HMM, and likewise the first iter-
ation of the IBM-4 collects counts from the IBM-
3 (in both cases the move and swap matrices are
filled with probabilities of the former model, then
theses matrices are used as in a regular model iter-
ation). A nondeficient IBM-4 is always initialized
by a nondeficient IBM-3. We did not set a fertility
limit (except for GIZA++).

Experiments were run on a Core i5 with 2.5
GHz and 8 GB of memory. The latter was the
main reason why we did not use still larger cor-
pora7. The running times for the entire training
were half a day without word classes and a day
with word classes. With 50 instead of 250 PGA it-
erations in all M-steps we get only half these run-
ning times, but the resulting F-measures deterio-
rate, especially for the IBM-4 with classes.

The running times of our implementation of the
IBM-5 are much more favorable: the entire train-
ing then runs in little more than an hour.

7The main memory bottleneck is the IBM-4 (6 GB with-
out classes, 8 GB with). Using refined data structures should
reduce this bottleneck.



5.1 Alignment Accuracy

The alignment accuracies – weighted F-measures
with α = 0.1 – for the tested corpora and model
variants are given in Table 1. Clearly, nondefi-
ciency greatly improves the accuracy of the IBM-
3, both compared to our deficient implementation
and that of GIZA++.

For the IBM-4 we get improvements for the
nondeficient variant in roughly half the cases, both
with and without word classes. We think this is
an issue of local minima, inexactly solved M-steps
and sensitiveness to initialization.

Interestingly, also the reduced deficient IBM-4
is not always better than the fully deficient variant.
Again, we think this is due to problems with the
non-concave nature of the models.

There is also quite some surprise regarding the
IBM-5: contrary to the findings of (Och and Ney,
2003) the IBM-5 in GIZA++ performs best in
three out of four cases - when competing with both
deficient and nondeficient variants of IBM-3 and
IBM-4. Our own implementation gives slightly
different results (as we do not use smoothing), but
it, too, performs very well.

5.2 Effect on Translation Performance

We also check the effect of the various align-
ments (all produced by RegAligner) on trans-
lation performance for phrase-based translation,
randomly choosing translation from German to
English. We use MOSES with a 5-gram lan-
guage model (trained on 500.000 sentence pairs)
and the standard setup in the MOSES Experi-
ment Management System: training is run in both
directions, the alignments are combined using
diag-grow-final-and (Och and Ney, 2003)
and the parameters of MOSES are optimized on
750 development sentences.

The resulting BLEU-scores are shown in Table
2. However, the table shows no clear trends and
even the IBM-3 is not clearly inferior to the IBM-
4. We think that one would need to handle larger
corpora (or run multiple instances of Minimum Er-
ror Rate Training with different random seeds) to
get more meaningful insights. Hence, at present
our paper is primarily of theoretical value.

6 Conclusion

We have shown that the word alignment models
IBM-3 and IBM-4 can be turned into nondeficient

Model #Classes Deficiency BLEU
HMM - nondeficient 29.72
IBM-3 - deficient 29.63
IBM-3 - nondeficient 29.73
IBM-4 1 x 1 fully deficient 29.91
IBM-4 1 x 1 reduced deficient 29.88
IBM-4 1 x 1 nondeficient 30.18
IBM-4 50 x 50 fully deficient 29.86
IBM-4 50 x 50 reduced deficient 30.14
IBM-4 50 x 50 nondeficient 29.90
IBM-5 50 nondeficient 29.84

Table 2: Evaluation of phrase-based translation
from German to English with the obtained align-
ments (for 100.000 sentence pairs). Training is run
in both directions and the resulting alignments are
combined via diag-grow-final-and. The
table shows no clear superiority of any method.
In fact, the IBM-4 is not superior to the IBM-3
and the HMM is about equal to the IBM-3. We
think that one needs to handle larger corpora to
get clearer insights.

variants, an important aim of probabilistic model-
ing for word alignment.

Here we have exploited that the models are
proper applications of the chain rule of probabili-
ties, where deficiency is only introduced by ignor-
ing parts of the history for the distortion factors in
the factorization. By proper renormalization the
desired nondeficient variants are obtained.

The arising models are trained via expectation
maximization. In the E-step we use hillclimb-
ing to get a likely alignment (ideally the Viterbi
alignment). While this cannot be handled fully
incrementally, it is still fast enough in practice.
The M-step energies are non-concave and have no
(known) closed-form solutions. They are handled
via projected gradient ascent.

For the IBM-3 nondeficiency clearly improves
alignment accuracy. For the IBM-4 we get im-
proved accuracies in roughly half the cases, both
with and without word classes. The IBM-5 per-
forms surprisingly well, it is often best and hence
much better than its reputation. An evaluation of
phrase based translation showed no clear insights.

Nevertheless, we think that nondeficiency in
fertility based models is an important issue, and
that at the very least our paper is of theoretical
value. The implementations are publicly available
in RegAligner 1.2.
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