Detecting Relational Constructions in German Texts Automatically

Oliver Hellwig
Wiebke Petersen

University of Düsseldorf, SFB 991

October, 8th
concept types

person, pope, house, verb, sun, Mary, wood, brother, mother, meaning, distance, spouse, argument, entrance
Concept Types: Relationality ($\pm R$)

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-relational</td>
<td>person, pope, house, verb, sun, Mary, wood</td>
</tr>
<tr>
<td>Relational</td>
<td>brother, mother, meaning, distance, spouse, argument, entrance</td>
</tr>
</tbody>
</table>

Löbner (2011)
Concept Types: Uniqueness of Reference ($\pm U$)

<table>
<thead>
<tr>
<th></th>
<th>Non-Unique Reference ($-U$)</th>
<th>Unique Reference ($+U$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Relational ($-R$)</td>
<td>Person, house, verb, wood</td>
<td>Mary, pope, sun</td>
</tr>
<tr>
<td>Relational ($+R$)</td>
<td>Brother, argument, entrance</td>
<td>Mother, meaning, distance, spouse</td>
</tr>
</tbody>
</table>

Löbner (2011)
Concept types

<table>
<thead>
<tr>
<th>Concept Type</th>
<th>Non-Unique Reference</th>
<th>Unique Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-relational ($-R$)</td>
<td>Sortal concept</td>
<td>Individual concept</td>
</tr>
<tr>
<td></td>
<td>person, house, verb, wood</td>
<td>Mary, pope, sun</td>
</tr>
<tr>
<td></td>
<td>$\lambda x. \ P(x)$</td>
<td>$\iota u. \ P(u)$</td>
</tr>
<tr>
<td>Relational ($+R$)</td>
<td>Proper relational concept</td>
<td>Functional concept</td>
</tr>
<tr>
<td></td>
<td>brother, argument, entrance</td>
<td>mother, meaning, distance, spouse entrance</td>
</tr>
<tr>
<td></td>
<td>$\lambda y \lambda x. \ R(x, y)$</td>
<td>$\lambda y. \ f(y)$</td>
</tr>
</tbody>
</table>

Löbner (2011)
Theory of concept types and determination (CTD)

Every concept type comes with a ‘natural mode’ of determination: congruent determination.

<table>
<thead>
<tr>
<th>DET⁺:</th>
<th>indefinite</th>
<th>a book, (\tilde{\gamma}) a pope</th>
</tr>
</thead>
<tbody>
<tr>
<td>DET−:</td>
<td>plural</td>
<td>books, (\tilde{\gamma}) popes</td>
</tr>
<tr>
<td></td>
<td>quantifiers</td>
<td>any book, (\tilde{\gamma}) any pope</td>
</tr>
<tr>
<td></td>
<td>demonstratives</td>
<td>this book, (\tilde{\gamma}) this pope</td>
</tr>
<tr>
<td>DET⁺:</td>
<td>singular definite</td>
<td>the pope, (\tilde{\gamma}) the stone</td>
</tr>
<tr>
<td>DET−:</td>
<td>absolute</td>
<td>the pope, (\tilde{\gamma}) the head</td>
</tr>
<tr>
<td>DET−:</td>
<td>possessive pronoun</td>
<td>my head, (\tilde{\gamma}) my stone</td>
</tr>
</tbody>
</table>
Incongruent determination: shifts

- The teacher has recommended a book. Mary buys the book. (anaphoric use)
- Mothers act like popes. (generic uses)
- Mary bought a Picasso. (metaphorical shift)
Incongruent determination: shifts

- The teacher has recommended a book. Mary buys the book. (anaphoric use)
- Mothers act like popes. (generic uses)
- Mary bought a Picasso. (metaphorical shift)

Incongruent determination is made explicit in languages with:

- weak/strong definite article split
 e.g. Rhineland dialects, ‘Dr Zoch kütt’ vs. ‘Dä Zoch kütt’
- (in)alienability split
 e.g. Lakhota, 2SG-spirit DEF ‘your spirit’ vs. 2SG-REL-book DEF ‘your book’
Research hypothesis

C02: Conceptual shifts – statistical evidence

- Congruent determination is more frequent than incongruent determination.
- The frequency pattern of determination modes in which a noun occurs (its determination fingerprint) depends on its concept type.
Research hypothesis

C02: Conceptual shifts – statistical evidence

- Congruent determination is more frequent than incongruent determination.
- The frequency pattern of determination modes in which a noun occurs (its determination fingerprint) depends on its concept type.

Question

Is it possible to determine the concept type of a noun automatically?
Research hypothesis

C02: Conceptual shifts – statistical evidence

- Congruent determination is more frequent than incongruent determination.
- The frequency pattern of determination modes in which a noun occurs (its determination fingerprint) depends on its concept type.

Question

Is it possible to determine the concept type of a noun automatically?

Necessary prerequisite

Determine the determination mode automatically:
- relatively easy for $Det_{\pm U}$ (closed class of determiners)
- more complex for $Det_{\pm R}$ (topic of today’s talk)
Aim: automatic detection of relational constructions in German

4 basic constructions:

- [Der Hut]_{P^{um}} [des Mannes]_{P^{or}} ist grün. (right genitive, \textit{rgen})
- [Maries]_{P^{or}} [Hut]_{P^{um}} ist grün. (left genitive, \textit{lgen})
- [Mein]_{P^{or}} [Hut]_{P^{um}} ist grün. (possessive pronoun, \textit{lpron})
- [Der Hut]_{P^{um}} [von Marie]_{P^{or}} ist grün. (right ‘von’, \textit{rvon})

non-trivial task:

- Er soll den Knochen vom Hund aufheben. (noun attached PP)
- Er soll den Knochen vom Boden aufheben. (verb attached PP)
- Peter bekommt ein Buch von Marie. (ambigue)
Aim: automatic detection of relational constructions in German

4 basic constructions:

- \ [[Der Hut]_{P^\text{um}} [des Mannes]_{P^\text{or}} \text{ ist grün.} (right genitive, \textit{rgen})
- \ [[Maries]_{P^\text{or}} [Hut]_{P^\text{um}} \text{ ist grün.} (left genitive, \textit{lgen})
- \ [[Mein]_{P^\text{or}} [Hut]_{P^\text{um}} \text{ ist grün.} (possessive pronoun, \textit{lpron})
- \ [[Der Hut]_{P^\text{um}} [von Marie]_{P^\text{or}} \text{ ist grün.} (right ‘von’, \textit{rvon})

non-trivial task:

- Er soll den Knochen vom Hund aufheben. (noun attached PP)
- Er soll den Knochen vom Boden aufheben. (verb attached PP)
- Peter bekommt ein Buch von Marie. (ambigue)
Seed corpus containing 300 sentences (Horn & Kimm 2014)

main data: 800 sentences (randomly drawn from Leipzig Corpora) annotated by 2 annotators with ‘PUM’, ‘POR’ and no-poss

example: (Der, PUM.rvon) (Bürgermeister, PUM.rvon) (von, POR.rvon) (Berlin, POR.rvon) (spricht, no-poss) (schnell, no-poss)

annotator agreement: 81.9% (\(\kappa = 0.767\), max \(\kappa = 0.936\))
Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>no relation (no-poss)</td>
<td>4915</td>
</tr>
<tr>
<td>Right genitive (rgen)</td>
<td>180</td>
</tr>
<tr>
<td>Possessive pronoun (lpron)</td>
<td>120</td>
</tr>
<tr>
<td>Right ‘von’ (rvon)</td>
<td>13</td>
</tr>
<tr>
<td>Left genitive (lgen)</td>
<td>12</td>
</tr>
</tbody>
</table>

frequencies of possessive classes in seed corpus; word-based count
Features: extracted from MATE trees

Marie wischte über das Ceranfeld des Herdes.

wischen (V)

marie (NE) ueber (PREP) ceranfeld (N)

der (ART) herd (N)

der (ART)
Features: extracted from MATE trees

Marie wischte über das Ceranfeld des Herdes.

For each word take 5-tuple:
- surface form
- lemma
- POS tag
- case marker
- s-ending

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceranfeld</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Ceranfeld</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>Ceranfeld</td>
<td></td>
<td>false</td>
</tr>
</tbody>
</table>
Features: multidimensional feature vector

syntactic parent + context window: ±2

\[
\begin{pmatrix}
 x_{i-2} \\
 über \\
 über \\
 PREP \\
 - \\
 false
\end{pmatrix},
\begin{pmatrix}
 x_{i-1} \\
 das \\
 der \\
 ART \\
 acc \\
 true
\end{pmatrix},
\begin{pmatrix}
 x_i \\
 Ceranfeld \\
 ceranfeld \\
 N \\
 acc \\
 false
\end{pmatrix},
\begin{pmatrix}
 x_{i+1} \\
 des \\
 der \\
 ART \\
 gen \\
 true
\end{pmatrix},
\begin{pmatrix}
 x_{i+2} \\
 Herdes \\
 herd \\
 N \\
 gen \\
 true
\end{pmatrix},
\begin{pmatrix}
 x_p^? \\
 wischte \\
 zwischen \\
 V \\
 - \\
 false
\end{pmatrix}
\]

wischen (V)

marie (NE) ueber (PREP) ceranfeld (N)

Marie wischte über das Ceranfeld des Herdes.
Rule base

- \(rvon \equiv N \leftarrow von \leftarrow (N \lor NE) \)
- \(lpron \equiv N \leftarrow \text{PRPOSS} \)
- \(rgen \equiv N \leftarrow N \leftarrow \text{ART}^1 \)
- \(lgen \equiv N \leftarrow \text{NE}_{\text{gen}} \)
 - \(lgen \equiv N \leftarrow \text{N}_{\text{gen}} \) very rarely
 - \(\Rightarrow \text{N}_{\text{gen}} \) many misclassifications.

\[^1\text{Original rule: } rgen \equiv N \leftarrow \text{N}_{\text{gen}} \leftarrow \text{ART}\]
Statistical ML algorithms

Statistical Algorithms

- **Non-sequential**: Maximum Entropy\(^2\)
- **Sequential**: Conditional Random Fields\(^3\), SVM\(^{HMM}\)\(^4\)

\(^2\)Ratnaparkhi (1998); implementation: OpenNLP
\(^3\)Lafferty (2001); implementation:
http://www.chokkan.org/software/crfsuite/
\(^4\)Altun (2003); implementation:
http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
Word-based evaluation by classifier

<table>
<thead>
<tr>
<th></th>
<th>SVM$^\text{HMM}$</th>
<th>CRF</th>
<th>ME</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>no-poss</td>
<td>97.8</td>
<td>99.3</td>
<td>97.3</td>
<td>99.2</td>
</tr>
<tr>
<td>POSS</td>
<td>90.8</td>
<td>79.6</td>
<td>88.5</td>
<td>75.3</td>
</tr>
<tr>
<td>PUM</td>
<td>91.4</td>
<td>75.5</td>
<td>91.9</td>
<td>70.5</td>
</tr>
</tbody>
</table>

30-fold cross-validation, green: Highest F-value in a row

Problems with the tree classifier: “... sei seine Partei$^\text{PUM}$ der Auffassung$^\text{POSS}$, ...”
Word-based evaluation by classifier and relational type

<table>
<thead>
<tr>
<th></th>
<th>SVM</th>
<th>HMM</th>
<th>CRF</th>
<th>ME</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>lgen POSS</td>
<td>93.15</td>
<td>71.58</td>
<td>94.83</td>
<td>57.89</td>
<td>93.48</td>
</tr>
<tr>
<td>lgen PUM</td>
<td>97.5</td>
<td>53.42</td>
<td>97.22</td>
<td>47.95</td>
<td>100</td>
</tr>
<tr>
<td>lpron POSS</td>
<td>96.51</td>
<td>92.74</td>
<td>96.93</td>
<td>88.27</td>
<td>99.3</td>
</tr>
<tr>
<td>lpron PUM</td>
<td>99.49</td>
<td>81.07</td>
<td>99.47</td>
<td>77.37</td>
<td>98.18</td>
</tr>
<tr>
<td>rgen POSS</td>
<td>99.25</td>
<td>83.17</td>
<td>99.37</td>
<td>78.64</td>
<td>99.12</td>
</tr>
<tr>
<td>rgen PUM</td>
<td>96.75</td>
<td>78.63</td>
<td>96.54</td>
<td>73.61</td>
<td>97.66</td>
</tr>
<tr>
<td>rvon POSS</td>
<td>98.4</td>
<td>58.57</td>
<td>96.9</td>
<td>59.52</td>
<td>94.74</td>
</tr>
<tr>
<td>rvon PUM</td>
<td>94.23</td>
<td>63.64</td>
<td>95.45</td>
<td>54.55</td>
<td>91.67</td>
</tr>
</tbody>
</table>

Problematic cases:

- **lgen**: “Peters Haus” (NE)
- **rvon**: “das Haus von Peter” vs. “Maria hat das Buch von Peter bekommen”
- **rgen**: “die Wut der Arbeiter” (nom.? gen.?)
Results of merging decisions: majority vote

<table>
<thead>
<tr>
<th>Type</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSS</td>
<td>91.6</td>
<td>80.3</td>
<td>85.6</td>
</tr>
<tr>
<td>PUM</td>
<td>93.2</td>
<td>74.4</td>
<td>82.7</td>
</tr>
</tbody>
</table>
Structure-based evaluation

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full matches</td>
<td>93.58</td>
<td>87.14</td>
<td>90.24</td>
</tr>
<tr>
<td>Partial matches</td>
<td>94.38</td>
<td>88.64</td>
<td>91.42</td>
</tr>
</tbody>
</table>

Examples:

- **Gold**: das Haus$_{PUM}$ von Peter und Maria$_{POSS}$
- **Silver**: das Haus$_{PUM}$ von Peter$_{POSS}$ und Maria
The influence of chunk lengths

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>long chunks ((LR > 4))</td>
<td>97.7%</td>
<td>71.7%</td>
<td>82.7%</td>
<td>61</td>
</tr>
<tr>
<td>short chunks ((LR \leq 4))</td>
<td>94.1%</td>
<td>90.4%</td>
<td>92.2%</td>
<td>597</td>
</tr>
</tbody>
</table>
Summary

Next steps:
- Merging parse trees
- Meta-learning
- Large-scale evaluation of Löbner’s theory