On the Construction of Śivasūtra-Alphabets

Wiebke Petersen

Institute of Language and Information
University of Düsseldorf, Germany
petersew@uni-duesseldorf.de

IIT Bombay, 7th February 2009
Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

\[A \rightarrow B / C _ D \]

example: final devoicing

\[
\begin{bmatrix}
+ \text{ consonantal} \\
- \text{ nasal} \\
+ \text{ voiced}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+ \text{ consonantal} \\
- \text{ nasal} \\
- \text{ voiced}
\end{bmatrix}
\] /__#
Phonological Rules

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/C__D$$

example: final devoicing

$$\begin{bmatrix}
+ & \text{consonantal} \\
- & \text{nasal} \\
+ & \text{voiced}
\end{bmatrix} \rightarrow \begin{bmatrix}
+ & \text{consonantal} \\
- & \text{nasal} \\
- & \text{voiced}
\end{bmatrix} / __\#$$
Phonological Rules

Modern notation

A is replaced by B if preceded by C and succeeded by D.

\[
A \rightarrow B/C_D
\]

Panini’s linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

Example

- *sutra* 6.1.77: *iko yaṇacī* (इको यणचि)
- analysis: *[ik]*\textsubscript{gen}*[yaṇ]*\textsubscript{nom}*[ac]*\textsubscript{loc}
- modern notation: *[iK]* \rightarrow *[yN]*$/_$/*[aC]*
Phonological Rules

Modern notation

A is replaced by *B* if preceded by *C* and succeeded by *D*.

\[
A \rightarrow B/C_D
\]

Panini's linear Coding

Example

- *sūtra 6.1.77: iko yañaci* (इको यणचि)
- analysis: [ik]_{gen}[yañ]_{nom}[ac]_{loc}
- modern notation: [iK] → [yN]/_ [aC]
Pāṇini faced the problem of giving a linear representation of the nonlinear system of sound classes.

A similar problem occurs in . . .
Libraries
Warehouses and stores
Pāṇini’s solution: Śivasūtras

<table>
<thead>
<tr>
<th></th>
<th>a i u</th>
<th>N</th>
<th>a·i·uṇ</th>
<th>r·lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>r!</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>e o</td>
<td>N</td>
<td>e·oṇ</td>
<td>ai·auc</td>
</tr>
<tr>
<td>4.</td>
<td>ai au</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>h y v r</td>
<td>T</td>
<td>hayavaraṭ</td>
<td>laṇ</td>
</tr>
<tr>
<td>6.</td>
<td>ṛ m n n</td>
<td>M</td>
<td>ŋamaṇaṇaṇam</td>
<td>jhabhaṇ</td>
</tr>
<tr>
<td>7.</td>
<td>jh bh</td>
<td>Ň</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>gh ḍh dh</td>
<td>S</td>
<td>ghaḍhadhaṣ</td>
<td>jabagaḍadaś</td>
</tr>
<tr>
<td>9.</td>
<td>j b g ḍ d</td>
<td>Š</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>kh ph ch ṭh th c ṭ t</td>
<td>V</td>
<td>khaphaḥaṭhaḥacatatav</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>k p</td>
<td>Y</td>
<td>kapyaḥ</td>
<td>śaṣasaḥ</td>
</tr>
<tr>
<td>12.</td>
<td>ś ś s</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>h</td>
<td>L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
Pāṇini’s solution: Śivasūtras

<table>
<thead>
<tr>
<th></th>
<th>a i u</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>r !</td>
<td>K</td>
</tr>
<tr>
<td>3</td>
<td>e o</td>
<td>Ň</td>
</tr>
<tr>
<td>4</td>
<td>ai au</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>h y v r</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>l</td>
<td>Ň</td>
</tr>
<tr>
<td>7</td>
<td>Ń m ŋ ŋ n</td>
<td>M</td>
</tr>
<tr>
<td>8</td>
<td>jh bh</td>
<td>Ň</td>
</tr>
<tr>
<td>9</td>
<td>gh ḍh dh</td>
<td>Ś</td>
</tr>
<tr>
<td>10</td>
<td>j b g ḍ d</td>
<td>Ś</td>
</tr>
<tr>
<td>11</td>
<td>kh ph ch ṭh th c ṭ t</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>k p</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>ś ś s</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>h</td>
<td>L</td>
</tr>
</tbody>
</table>

अइउण्। कङ्कः।
a·i·un | r·lk

एओड्। ऐओच्।
e·oṅ | ai·auc

हयवर्ट। लण्।
hayavaraṇ | laṇ

नम्मणनम्। ञम्म।
ñamaññañanam | jhabhaṅ

घढघष्। जबगडदश्।
ghadhadhas | jabagadadaś

खफ्फङ्घथचटतव्।
kaphachathathacatatav

कपय्। शषसर्। हल्।
kapay | šaṣasar | hal
Pāṇini’s solution: Śivasūtras

<table>
<thead>
<tr>
<th>1</th>
<th>a i u</th>
<th>ṇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>r l</td>
<td>K</td>
</tr>
<tr>
<td>3</td>
<td>e o</td>
<td>Ė</td>
</tr>
<tr>
<td>4</td>
<td>ai au</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>h y v r</td>
<td>ṇ</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>7</td>
<td>ŋ m ŋ ŋ ŋ</td>
<td>ō</td>
</tr>
<tr>
<td>8</td>
<td>jh bh</td>
<td>ō</td>
</tr>
<tr>
<td>9</td>
<td>gh ḍh dh</td>
<td>ō</td>
</tr>
<tr>
<td>10</td>
<td>j b g ḍ ḍ</td>
<td>ō</td>
</tr>
<tr>
<td>11</td>
<td>kh ph ch ṭh th c ṭ t</td>
<td>V</td>
</tr>
<tr>
<td>12</td>
<td>k p</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>ś ś ś</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>h</td>
<td>L</td>
</tr>
</tbody>
</table>

Markers

- a·i·uṅ | r·l̄k
- e·oṅ | a·i·auc
- hayavaraṭ | laṅ
- ŋamaṇaṇaṇaṇam | jhabhaṅ
- ghaḍhadhaṣ | jabaḍḍadaś
c k h a p a ṭ h a ṭ a ṭ a ṭ a v | kapay | śaṣaśaṅ | hal
Pratyāhāras

1. a i u ṇ
2. r ! K
3. e o Ń
4. ai au C
5. h y v r Ŵ
Pratyāhāras

1. a i u N
2. r l K
3. e o N
e o Ń
4. ai au C
5. h y v r T
 iK
Pratyāhāras

1. a i u N
2. r ! K
3. e o Ń
4. ai au C
5. h y v r Ź

iK = \langle i, u, r, ! \rangle
Analysis of iko yaṇacī: \([iK] \rightarrow [yŅ]/_ [aC]\)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>i</th>
<th>u</th>
<th>Ņ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>ɾ</td>
<td>!_</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>e</td>
<td>o</td>
<td>Ǹ</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>ai</td>
<td>au</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>h</td>
<td>y</td>
<td>v</td>
<td>r</td>
</tr>
<tr>
<td>6.</td>
<td>l</td>
<td>Ǹ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- \([iK] \rightarrow [yŅ]/_ [aC]\)
- \(\langle i, u, ɾ, !_ \rangle \rightarrow \langle y, v, r, l \rangle/_ \langle a, i, u, ɾ, !_ , e, o, ai, au \rangle\)
Analysis of iko yaṇaci: \([iK] \rightarrow [yN]/_ [aC]\)

1. \(a\ i\ u\ N\)
2. \(r\ !\ K\)
3. \(e\ o\ Ñ\)
4. \(ai\ au\ C\)
5. \(h\ y\ v\ r\ T\)
6. \(l\ Ñ\)

\([iK] \rightarrow [yN]/_ [aC]\)
\(\langle i, u, r, l\rangle \rightarrow \langle y, v, r, l\rangle/_ \langle a, i, u, r, l, e, o, ai, au\rangle\)
General problem of S-sortability

Given a set of classes, order the elements of the classes (without duplications) in a linear order (in a list) such that each single class forms a continuous interval with respect to that order.

- The target orders are called **S-orders**
- A set of classes is **S-sortable** if it has an S-order
General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers such that each single class can be denoted by a sound-marker-pair (*pratyāhāra*).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker behind each element.

Given the set of classes \(\{\{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}\), the order \(a\ b\ c\ d\) is one of its S-orders and \(a\ M_1\ b\ M_2\ c\ M_3\ d\ M_4\) is one of its S-alphabets.
General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers such that each single class can be denoted by a sound-marker-pair (pratyāhāra).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker behind each element.

Given the set of classes \(\{ \{a, b\}, \{a, b, c\}, \{a, b, c, d\} \} \), the order \(a \ b \ c \ d \) is one of its S-orders and \(a \ M_1 \ b \ M_2 \ c \ M_3 \ d \ M_4 \) is one of its S-alphabets.
Some more Examples

S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]

is S-sortable;

one of its S-orders is
\[
a b c g h f i d e
\]

non-S-sortable example

The set of classes:
\[
\{\{a, b\}, \{b, c\}, \{a, c\}\}
\]

is not S-sortable.

non-S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}
\]

is not S-sortable.
Some more Examples

S-sortable example
The set of classes:
\[\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\} \]

is S-sortable;
one of its S-orders is
\[a \ b \ c \ g \ h \ f \ i \ d \ e \]

non-S-sortable example
The set of classes:
\[\{\{a, b\}, \{b, c\}, \{a, c\}\} \]

is not S-sortable.

non-S-sortable example
The set of classes:
\[\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\} \]

is not S-sortable.
Some more Examples

S-sortable example
The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]
is S-sortable;
one of its S-orders is
\[
a b \ c \ g \ h \ f \ i \ d \ e
\]

non-S-sortable example
The set of classes:
\[
\{\{a, b\}, \{b, c\}, \{a, c\}\}
\]
is not S-sortable.

non-S-sortable example
The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}
\]
is not S-sortable.
Some more Examples

S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]
is S-sortable;
one of its S-orders is
\[
a \ b \ c \ g \ h \ f \ i \ d \ e
\]

non-S-sortable example

The set of classes:
\[
\{\{a, b\}, \{b, c\}, \{a, c\}\}
\]
is not S-sortable.

non-S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}
\]
is not S-sortable.
Some more Examples

<table>
<thead>
<tr>
<th>S-sortable example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set of classes:</td>
</tr>
<tr>
<td>{{d, e}, {a, b}, {b, c, d, f, g, h, i}, {f, i}, {c, d, e, f, g, h, i}, {g, h}} is S-sortable;</td>
</tr>
<tr>
<td>one of its S-orders is</td>
</tr>
<tr>
<td>a b c g h f i d e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-S-sortable example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set of classes:</td>
</tr>
<tr>
<td>{{a, b}, {b, c}, {a, c}} is not S-sortable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>non-S-sortable example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set of classes:</td>
</tr>
<tr>
<td>{{d, e}, {a, b}, {b, c, d}, {b, c, d, f}} is not S-sortable.</td>
</tr>
</tbody>
</table>
Some more Examples

S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]

is S-sortable;

one of its S-orders is
\[a\ b\ c\ g\ h\ f\ i\ d\ e\]

non-S-sortable example

The set of classes:
\[
\{\{a, b\}, \{b, c\}, \{a, c\}\}
\]

is not S-sortable.

non-S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}
\]

is not S-sortable.
S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]
is S-sortable;
one of its S-orders is
\[
a \ b \ c \ g \ h \ f \ i \ d \ e
\]

non-S-sortable example

The set of classes:
\[
\{\{a, b\}, \{b, c\}, \{a, c\}\}
\]
is not S-sortable.

non-S-sortable example

The set of classes:
\[
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}
\]
is not S-sortable.
\[
a \ b \ c \ d \ e \text{ or } e \ d \ c \ b \ a
\]
Some more Examples

S-sortable example

The set of classes:
\[\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}\]

is S-sortable;
one of its S-orders is
\[a \ b \ c \ g \ h \ f \ i \ d \ e\]

non-S-sortable example

The set of classes:
\[\{\{a, b\}, \{b, c\}, \{a, c\}\}\]

is not S-sortable.

non-S-sortable example

The set of classes:
\[\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\]

is not S-sortable.

\[a \ b \ c \ d \ e\]
or
\[e \ d \ c \ b \ a\]
Visualize relations

\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
Visualize relations

\{ \{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\} \}

concept lattice
Visualize relations

\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \\
\{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}

\{\{a, b\}, \{b, c\}, \{a, c\}\}

\{\{d, e\}, \{a, b\}, \{b, c, d, f\}\}
Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

1. Its concept lattice is Hasse-planar and for any element \(a \) there is a node labeled \(a \) in the S-graph.

2. The concept lattice of the enlarged set of classes is Hasse-planar.

3. The Ferrers-graph of the enlarged set of classes is bipartite.
Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

1. Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.

2. The concept lattice of the enlarged set of classes is Hasse-planar.

3. The Ferrers-graph of the enlarged set of classes is bipartite.

```
[Diagram of Hasse-planar concept lattice with nodes labeled a, b, c, d, e, f, and edges connecting them in a bipartite manner.]
```

```
[Diagram of a not S-sortable example with a similar structure but not meeting the bipartite condition.]
```
Hasse-planarity

\{\{a, b\}, \{a, c\}, \{b, c\}\}

planar, but not Hasse-planar
2nd condition: Hasse-planar \Rightarrow S-sortable

\[
\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
\]
2nd condition: S-sortable \Rightarrow Hasse-planar

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
2nd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
- The planarity of a graph is difficult to check.
Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

1. Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.

2. The concept lattice of the enlarged set of classes is Hasse-planar.

3. The Ferrers-graph of the enlarged set of classes is bipartite.
1st condition ⇔ 2nd condition
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.
procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

\[edM_1cfi \]
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.
procedure

Start with the empty sequence and choose a walk through the S-graph:

- **While moving upwards** do nothing.
- **While moving downwards** along an edge add a new marker to the sequence unless its last element is already a marker.
- **If a sound is reached**, add the sound to the sequence, unless it has been added before.

$$ed M_1 cfi M_2 gh M_3$$
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- **While moving upwards** do nothing.
- **While moving downwards** along an edge add a new marker to the sequence unless its last element is already a marker.
- **If a sound is reached**, add the sound to the sequence, unless it has been added before.

\[edM_1cfiM_2ghM_3b \]
S-alphabets with a minimal number of markers

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

\[ed M_1 cfi M_2 gh M_3 b M_4 a \]
procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

ed \ M_1 c f i M_2 g h M_3 b M_4 a M_5
1st condition: evaluation

+ Allows the construction of S-alphabets with minimal number of markers.
 - The planarity of a graph is difficult to check.
Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

1. Its concept lattice is Hasse-planar and for any element \(a \) there is a node labeled \(a \) in the S-graph.

2. The concept lattice of the enlarged set of classes is Hasse-planar.

3. The Ferrers-graph of the enlarged set of classes is bipartite.

- The Ferrers-graph can be computed directly from the set of classes.
- Its bipartity can be checked algorithmically.
Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
3rd condition: terminology & proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>×</td>
<td>×</td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td>★</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td>×</td>
<td>×</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>3</td>
<td>★</td>
<td>×</td>
<td>×</td>
<td>★</td>
<td>★</td>
<td>×</td>
</tr>
</tbody>
</table>
Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.
3rd condition: example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
3rd condition: example

On the Construction of Śivasūtra-Alphabets Wiebke Petersen
3rd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
- It can be checked easily by an algorithm.
Getting back to Pāṇini’s problem

Q: Are the Śivasūtras minimal (with respect to length)?
What does minimal mean?

The Śivasūtras are **not minimal** if it is possible to rearrange the Sanskrit sounds in a new list with markers such that

1. each *pratyāhāra* forms an interval ending before a marker,
2. no sound occurs twice

or one sound occurs twice but less markers are needed.

⇒ duplicating a sound is worse than adding markers
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Pratyāhāras</th>
<th>Generalization</th>
<th>Main theorem</th>
<th>Minimality of Śivasūtras</th>
</tr>
</thead>
</table>

Are Pāṇini’s Śivasūtras minimal?
Are Pāṇini’s Śivasūtras minimal?

is it necessary to duplicate a sound?
Are Pāṇini’s Śivasūtras minimal?

if no

is it necessary to duplicate a sound?

if yes

is it the best choice to duplicate ‘h’?

Śivasūtras are not minimal
Are Pāṇini’s Śivasūtras minimal?

- Is it necessary to duplicate a sound?
 - No
 - Yes

- Is it the best choice to duplicate 'h'?
 - No
 - Yes

- Given the duplication of 'h', is the number of anubandhas minimal?

Šivasūtras are not minimal
Are Pāṇini’s Śivasūtras minimal?

- Is it necessary to duplicate a sound?
 - No
 - Yes
 - Is it the best choice to duplicate 'h'?
 - No
 - Yes
 - Given the duplication of 'h', is the number of anubandhas minimal?
 - No
 - Yes
 - Śivasūtras are minimal
 - Śivasūtras are not minimal
Is it necessary to duplicate a sound?

Main theorem on S-sortability (part 1a)
If a set of classes is S-sortable, then its concept lattice is Hasse-planar.

concept lattice of Pāṇini’s pratyāhāras
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.
Is it necessary to duplicate a sound?

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

There is no S-alphabet for the set of classes given by Pāṇini’s *pratyāhāras* without duplicated elements!
Are Pāṇini’s Śivasūtras minimal?

is it necessary to duplicate a sound?

yes

is it the best choice to duplicate 'h'?
Altogether there exists 249 independent triples. h is included in all of them.
Are Pāṇini’s Śivasūtras minimal?

- is it necessary to duplicate a sound? yes
- is it the best choice to duplicate ‘h’? yes

given the duplication of ‘h’, is the number of anubandhas minimal?
Concept lattice of Pāṇini’s *pratyāhāras* with duplicated h
Concept lattice of Pāṇini’s pratyāhāras with duplicated h
With the Śivasūtras Pāṇini has chosen one out of nearly 12 million minimal S-alphabets!
Are Pāṇini's Śivasūtras minimal?

- Is it necessary to duplicate a sound? (Yes)

- Is it the best choice to duplicate 'h'? (Yes)

- Given the duplication of 'h', is the number of anubandhas minimal? (Yes)

Śivasūtras are minimal.
Open problems

The story is much more intricate

- We have neither shown that Pāṇini’s technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.
 - not all sound classes are denoted by pratyāhāras
 - rules overgeneralize
 - sūtra 1.3.10: yathāsaṃkhyamanudeśaḥ samānāṁ
Open problems

The story is much more intricate

- We have **neither** shown that Pāṇini’s technique for the representation of sound classes is optimal
- **nor** that he has used his technique in an optimal way.
 - not all sound classes are denoted by *pratyāhāras*
 - rules overgeneralize
 - *sūtra* 1.3.10: *yathāsaṃkhyamanudeśaḥ samānām*
\langle a, i, u, M_1, \{r, l\}_1, M_2, \langle\langle e, o\rangle_2, M_3\rangle, \langle\langle ai, au\rangle_3, M_4\rangle\rangle_4,

h, y, v, r, M_5, l, M_6, \= m, \{\= n, \= n, n\}_5, M_7, jh, bh, M_8,

\{gh, dh, dh\}_6, M_9, j, \{b, g, d, d\}_7, M_{10}, \{kh, ph\}_8, \{ch, \= th, th\}_9,

\{c, t, t\}_10, M_{11}, \{k, p\}_11, M_{12}, \{\= s, s, s\}_12, M_{13}, h, M_{14}\rangle

2! \times 2! \times 2! \times 2! \times 3! \times 3! \times 4! \times 2! \times 3! \times 3! \times 2! \times 3!

\{1\}_1 \{2\}_2 \{3\}_3 \{4\}_4 \{5\}_5 \{6\}_6 \{7\}_7 \{8\}_8 \{9\}_9 \{10\}_10 \{11\}_11 \{12\}_12

= 2 \times 2 \times 2 \times 2 \times 6 \times 6 \times 24 \times 2 \times 6 \times 6 \times 2 \times 6 = 11943936

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen
Some numbers

- Pāṇini denotes 42 sound classes by *pratyāhāras*.
- The Śivasūtras allow the construction of 281 *pratyāhāras*.
- $2^{42} - 43 \ (> 2 \cdot 10^{12})$ possible sound classes.
- 11 (resp. 10, if unmarked classes are permitted) binary features are necessary to denote Pāṇini’s *pratyāhāras* ($\Rightarrow 2^{11} = 2048$, resp. $2^{10} = 1024$ classes can be constructed).
- Pāṇini has chosen 1 out of 11,943,936 minimal S-alphabets.
- The 42 sounds can be ordered in nearly $43! \ (> 6 \cdot 10^{52})$ lists in which h occurs twice.

Origin of Pictures

- libraries (left):
 http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right):
 http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses:
 http://www.metrogroup.de/servlet/PB/menu/1114920_l1/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/