On the Construction of Śivasūtra-Alphabets

Wiehke Petersen

Institute of Language and Information University of Düsseldorf, Germany petersew@uni-duesseldorf.de

IIIT Hyderabad, 20th January 2009

अइउण्। ऋऌक्। एओङ्। ऐऔच्। हयवरट्। लण्। ञमङणनम्। झभञ्। घढधष्। जबगडदश्। खफछठथचटतव्। कपय्। शषसर्। हल्।

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C_D}$$

example: final devoicing

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

example: final devoicing

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- analysis: [ik]_{gen}[yaṇ]_{nom}[ac]_{loc}
- modern notation: [iK] \rightarrow [yN]/_ [aC]

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- \bullet analysis: $[ik]_{gen}[yan]_{nom}[ac]_{loc}$
- modern notation: $[iK] \rightarrow [yN]/[aC]$

Pāṇini faced the problem of giving a linear representation of the nonlinear system of sound classes.

A similar problem occurs in ...

Warehouses and stores

Pāṇini's solution: Śivasūtras

1.	а	i	u			Ņ
2.				ŗ	ļ	Ņ
2. 3.		е	0			Ń
4. 5. 6.		ai	au			C
5.	h	у	V	r		Ņ Ņ
6.					- 1	
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
						_
9.			gh	фh	dh	Ş
9. 10.	j	b	gh g	dh d	dh d	Ñ Ş Ś
	j kh	b ph				Ş Ś
10.			g	ģ	d	Ş Ś V
10.		ph	g ch	ḍ ṭh	d th	
10. 11.	kh		g ch	ḍ ṭh	d th	V
10. 11.	kh	ph	g ch c	ḍ ṭh ṭ	d th	V Y

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's solution: Śivasūtras

1.	а	i	u			Ņ
2. 3.				ŗ	ļ	K
3.		е	0			N C T N M
4. 5.		ai	au			C
5.	h	у	V	r		Ţ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ṣ Ś
10.	j	b	g	ġ	d	Ś
11.	kh	ph	ch	ţh	th	
			_	_	_	V
			С	ţ	t	V
12.	k	р	C	ţ	τ	Υ
12. 13.	k	p ś	ș.	ţ	τ	Y R
	k h	p ś			τ	Υ

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's solution: Śivasūtras

1.	a	i	u			Ņ
2. 3.				ŗ	į	K
3.		е	0			Ň C
4. 5.		ai	au			C
5.	h	У	V	r		Ņ Ņ
6.					- 1	
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ṣ Ś
10.	j	b	g	d	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	p				Υ
13.		ś	Ş	S		R
14.	h					L

anubandha

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pratyāhāras

Introduction

```
а
                                        N K N C T
                      u
2.
3.
                     0
4.
             ai
                     au
5.
       h
              у
                      ٧
```

S-sortability

Pratyāhāras

Pratyāhāras

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / (a, i, u, r, l, e, o, ai, au)$

Introduction

- $[iK] \rightarrow [yN]/_[aC]$
- $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / (a, i, u, r, l, e, o, ai, au)$

General problem of S-sortability

Given a set of classes, order the elements of the classes (without duplications) in a linear order (in a list) such that each single class forms a continuous interval with respect to that order.

- The target orders are called S-orders
- A set of classes is S-sortable if it has an S-order

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers (*anubandhas*) such that each single class can be denoted by a sound-marker-pair (*pratyāhāra*).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker (anubandha) behind each element.

Given the set of classes $\{\{a,b\},\{a,b,c\},\{a,b,c,d\}\}$, the order abcd is one of its S-orders and $aM_1bM_2cM_3dM_4$ is one of its S-alphabets.

Introduction

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers (*anubandhas*) such that each single class can be denoted by a sound-marker-pair (*pratyāhāra*).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker (anubandha) behind each element.

Given the set of classes $\{\{a,b\},\{a,b,c\},\{a,b,c,d\}\}$, the order abcd is one of its S-orders and $aM_1bM_2cM_3dM_4$ is one of its S-alphabets.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

5-sortable;

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

```
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\ is not S-sortable.
```

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is

S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is

S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$$
 is not S-sortable.

Visualize relations

set of classes
$$(A, \Phi)$$
: $A = \{a, b, c, d, e, f, g, h, i\}$

$$\Phi = \{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$

	abcdefghi
$\{d,e\}$	××
$\{b, c, d, f, g, h, i\}$	×××××××
$\{a,b\}$	××
$\{f,i\}$	× ×
$\{c,d,e,f,g,h,i\}$	××××××
$\{g,h\}$	××

concept lattice of (A, Φ)

formal context of (A, Φ)

Visualize relations

set of classes
$$(A, \Phi)$$
: $A = \{a, b, c, d, e, f, g, h, i\}$

$$\Phi = \{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$

	abcdefghi
{d, e}	××
$\{b,c,d,f,g,h,i\}$	****
$\{a,b\}$	××
$\{f,i\}$	× ×
$\{c,d,e,f,g,h,i\}$	××××××
$\{g,h\}$	××
	I

concept lattice of (A, Φ)

formal context of (A, Φ)

Visualize relations

$$\{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$

S-sortability

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}$$

Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: S-sortable

Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: not S-sortable

2nd condition: terminology

2nd condition

A set of classes (\mathcal{A}, Φ) is S-sortable without duplications if and only if the concept lattice of the enlarged set of classes $(\mathcal{A}, \tilde{\Phi})$ is Hasse-planar.

Enlarging a set of classes means adding all singleton sets:

$$\tilde{\Phi} = \Phi \cup \{\{a\} \mid a \in \mathcal{A}\}$$

Hasse-planarity: $\{\{a,b\},\{a,c\},\{b,c\}\}$

planar, but not Hasse-planar

2nd condition: Hasse-planar ⇒ S-sortable

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}$$

2nd condition: S-sortable ⇒ Hasse-planar

Introduction

2nd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
- The planarity of a graph is difficult to check.

Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

Example: S-sortable

Examples: not S-sortable

1st condition: proof

2nd condition \rightarrow 1st condition

Each S-order of the enlarged set of classes $(A, \tilde{\Phi})$ is trivially an S-order of the original set of classes (A, Φ) .

1st condition: proof

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached. add the sound to the sequence, unless it has been added before.

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

procedure

Start with the empty sequence and choose a walk through the S-graph:

 While moving upwards do nothing.

Minimality of the Sivasūtras

- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

ed M₁ cfi

procedure

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 $ed M_1 cfi M_2$

 edM_1cfiM_2gh

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

 $ed M_1 cfi M_2 gh M_3$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 $ed M_1 cfi M_2 gh M_3 b$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 $edM_1cfiM_2ghM_3bM_4a$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

 $edM_1cfiM_2ghM_3bM_4aM_5$

procedure

Start with the empty sequence and choose a walk through the S-graph:

Minimality of the Sivasūtras

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

1st condition: evaluation

- + Allows the construction of S-alphabets with minimal number of markers.
- The planarity of a graph is difficult to check.

S-sortability

Main theorem of S-sortability

A set of classes is S-sortable without duplications if one of the following equivalent statements is true:

- Its concept lattice is Hasse-planar and for any element a there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes is Hasse-planar.
- The Ferrers-graph of the enlarged set of classes is bipartite.

- The Ferrers-graph can be computed directly from the formal context.
- Its bipartity can be checked algorithmically.

3rd condition: terminology & proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

3rd condition: terminology & proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

	a	b	С	d	е	f
0	• • ×	•	•	×	×	•
1	•	×	×	×	•	•
2	X	×	•	•	•	•
3	•	×	×	•	•	×

3rd condition: terminology & proof

Theorem (Zschalig 2007)

The concept lattice of a formal context is Hasse-planar if and only if its Ferrers-graph is bipartite.

3rd condition: example

	а	b	С	d	е	f
0				×	×	
1		×	\times	\times		
2	×	×				
3		×	×			×

3rd condition: example

3rd condition: evaluation

- It is of no help in the construction of S-alphabets with minimal number of markers.
- + It can be checked easily by an algorithm.

Getting back to Pānini's problem

Introduction

 $a \cdot i \cdot un \mid r \cdot lk \mid e \cdot on \mid ai \cdot auc \mid hayavarat \mid$ $lan \mid \tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid ghadhadhas \mid jabaqadadas \mid$ khaphachathathacatatav | kapay | śasasar | hal |

Q: Are the Śivasūtras minimal (with respect to length)?

Minimality of the Sivasūtras

What does minimal mean?

```
a \cdot i \cdot un \mid r \cdot lk \mid e \cdot on \mid ai \cdot auc \mid hayavarat \mid
lan \mid \tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid ghadhadhas \mid jabagadadas \mid
khaphachathathacatatav | kapay | śasasar | hal |
```

The *Śivasūtras* are minimal if it is **im**possible to rearrange the Sanskrit sounds in a new list with anubandhas such that

- each pratyāhāra forms an interval ending before an anubandha,
- no sound occurs twice
- or one sound occurs twice but less anubandhas are needed.
- ⇒ duplicating a sound is worse than adding anubandhas

Introduction

Are Pāṇini's Śivasūtras minimal?

S-sortability

S-sortability

Main theorem on S-sortability (part 1a)

If a set of classes is S-sortable, then its concept lattice is Hasse-planar.

concept lattice of Pānini's pratyāhāras

Criterion of Kuratowski

A graph which has the graph \bowtie as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

Criterion of Kuratowski

A graph which has the graph as a minor is not planar.

There is no S-alphabet for the set of classes given by Pāṇini's pratyāhāras without duplicated elements!

h and the independent triples

$$\begin{array}{c|cccc}
 & h & l & v \\
\hline
\{h,l\} & \times & \times & \\
\{h,v\} & \times & \times & \\
\{v,l\} & \times & \times & \times
\end{array}$$

Altogether there exists 249 independent triples. h is included in all of them.

Concept lattice of Pāṇini's pratyāhāras with duplicated h

Concept lattice of Pāṇini's pratyāhāras with duplicated h

Concept lattice of Pāṇini's pratyāhāras with duplicated h

With the *Śivasūtras* Pāṇini has chosen one out of nearly 12 million minimal S-alphabets!

S-sortability

$$\langle a, i, u, M_1, \{r, i\}_1, M_2, \{\langle \{e, o\}_2, M_3 \rangle, \langle \{ai, au\}_3, M_4 \rangle \}_4,$$

$$h, y, v, r, M_5, I, M_6, \tilde{n}, m, \{\dot{n}, \dot{n}, n, \}_5, M_7, jh, bh, M_8,$$

$$\{gh, dh, dh\}_6, M_9, j, \{b, g, d, d\}_7, M_{10}, \{kh, ph\}_8, \{ch, th, th\}_9,$$

$$\{c, t, t\}_{10}, M_{11}, \{k, p\}_{11}, M_{12}, \{\dot{s}, \dot{s}, \dot{s}\}_{12}, M_{13}, h, M_{14} \}$$

$$\begin{array}{l} 2! \times 2! \times 2! \times 2! \times 3! \times 3! \times 3! \times 4! \times 2! \times 3! \times 3! \times 3! \times 2! \times 3! \\ \{\}_1 & \{\}_2 & \{\}_3 & \{\}_4 & \{\}_5 & \{\}_6 & \{\}_7 & \{\}_8 & \{\}_9 & \{\}_{10} & \{\}_{11} & \{\}_{12} \\ = 2 \times 2 \times 2 \times 2 \times 6 \times 6 \times 24 \times 2 \times 6 \times 6 \times 2 \times 6 = 11943936 \end{array}$$

minimal

Introduction

The story is much more intricate

- We have neither shown that Pānini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.
 - not all sound classes are denoted by pratyāhāras
 - rules overgeneralize
 - sūtra 1.3.10: yathāsamkhyamanudeśah samānām

Open problems

The story is much more intricate

- We have neither shown that Pānini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.
 - not all sound classes are denoted by pratyāhāras
 - rules overgeneralize
 - sūtra 1.3.10: yathāsamkhyamanudeśah samānām

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

Objects in libraries, ware-houses, and stores are only *nearly* linearly arranged:

⇒ Second (and third) dimension can be used in order to avoid duplications

total list:

aiuŅṛļK eoŃ aiauC hyvrŢ lŅ ñmṅṇnM jhbhÑ ghḍhdhŞ jbgḍdŚ khphchththcttV kpY śṣṣR hL

- total list is of minimal length;
- 2 sound list is of minimal length;
- 3 anubandha list is of minimal length;
- 4 total list is as short as possible while the *anubandha* list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

sound list:

aiu ṛḷ eo aiau hyvr l ñmṅṇn jhbh ghḍhdh jbgḍd khphchṭhthcṭt kp śṣs h

- total list is of minimal length;
- 2 sound list is of minimal length;
- 3 anubandha list is of minimal length;
- 4 total list is as short as possible while the *anubandha* list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

anubandha list:

- total list is of minimal length;
- 2 sound list is of minimal length;
- anubandha list is of minimal length;
- 4 total list is as short as possible while the anubandha list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

aiuŅṛļK eo N aiau C hyvrŢ lŅ ñmṅṇnM jhbhÑ ghḍhdhŞ jbgḍdŚ khphchṭhthcṭtV kpY śṣsR hL

- total list is of minimal length;
- sound list is of minimal length;
- anubandha list is of minimal length;
- 4 total list is as short as possible while the *anubandha* list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

aiuŅṛļK eoṅ aiauC hyvrŢ lŅ ñmṅṇnM jhbhÑ ghḍhdhṢ jbgḍdŚ khphchththcttV kpY śṣṣR hL

- total list is of minimal length;
- sound list is of minimal length;
- anubandha list is of minimal length;
- 4 total list is as short as possible while the *anubandha* list is minimal;
- 5 total list is as short as possible while the sound list is minimal;
- ⇒ duplicating sounds is worse than adding *anubandhas*

Principle of economy

Staal 1962

Another general principle is also implicitly used by $P\bar{a}$ nini. This is the famous economy criterion [...] In accordance with this principle each linguistic rule should be given in the shortest possible form, whereas the number of metalinguistic symbols should be reduced as far as possible.

⇒ 5. criterion of minimality: total list is as short as possible while the sound list is minimal

Kiparsky 1991

The reasoning from economy goes like this. To be grouped together in a pratyāhāra, sounds must make up a continuous segment of the list. Economy requires making the list as short as possible, which means avoiding repetitions of sounds, and using as few markers as possible.

Consequently, if class A properly includes class B, the elements shared with B should be listed last in A; the marker that follows can then be used to form pratyāhāras for both A and B. In this way the economy principle, by selecting the shortest grammar, determines both the ordering of sounds and the placement of markers among them.

Kiparsky 1991

The reasoning from economy goes like this. To be grouped together in a pratyāhāra, sounds must make up a continuous segment of the list. Economy requires making the list as short as possible, which means avoiding repetitions of sounds, and using as few markers as possible. Consequently, if class A properly includes class B, the elements shared with B should be listed last in A; the marker that follows can then be used to form pratyāhāras for both A and B. In this way the economy principle, by selecting the shortest grammar, determines both the ordering of sounds and the placement of markers among them.

Śivasūtras:

aiu Ņ rļ K eo N aiau C hyvr T l Ņ ñ m n n m jh bh N gh ḍh dh Ş j b g ḍ d Ś kh ph ch ṭh th c ṭ t V k p Y śṣs R h L

```
aK = \{a, i, u, r, f\}, iK = \{i, u, r, f\} \text{ and } uK = \{u, r, f\} \Rightarrow a < i < u < r, f\}
but:
ihL =
{h, s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
ihR =
{s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
jhY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh\}
ih\dot{S} = \{d, d, g, b, i, dh, dh, gh, bh, ih\} and
ihS = \{dh, dh, gh, bh, ih\}
\Rightarrow h < s, s, \leq p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, i <
dh, dh, gh, bh, jh
```

Śivasūtras:

aiu Ņ rļ K eo N aiau C hyvr T l Ņ ñ m n n m jh bh \tilde{N} gh ḍh dh \tilde{S} j b g ḍ d \tilde{S} kh ph ch ṭh th c ṭ t V k p Y śṣs R h L

```
aK = \{a, i, u, r, l\}, iK = \{i, u, r, l\} \text{ and } uK = \{u, r, l\} \Rightarrow a < i < u < r, l\}
but:
ihL =
{h, s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
ihR =
{s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
jhY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh\}
ih\hat{S} = \{d, d, g, b, i, dh, dh, gh, bh, ih\} and
ihS = \{dh, dh, gh, bh, ih\}
\Rightarrow h < s, s, \acute{s} < p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, j <
dh. dh. gh. bh. jh
```

Literature

- Kiparsky, P. (1991), Economy and the construction of the Śivasūtras. In: M. M. Deshpande & S. Bhate (eds.), *Pāṇinian Studies*, Michigan: Ann Arbor.
- Petersen, W. (2008), Zur Minimalität von Pāṇinis Śivasūtras Eine Untersuchung mit Mitteln der Formalen Begriffsanalyse. PhD thesis, university of Düsseldorf.
- Petersen, W. (2009), On the Construction of Sivasutra-Alphabets. In: A. Kulkarni and G. Huet (eds.): Sanskrit Computational Linguistics. LNCS 5406, Springer.
- Staal, F. (1962), A Method of Linguistic Description. Language 38, 1-10.
- Zschalig, C. (2007), Bipartite Ferrers-graphs and planar concept lattices. In: S. O. Kuznetsov and S. Schmidt (eds.): *Proceedings of the 5th ICFCA*. LNCS 4390, p. 313–327, Springer.

Origin of Pictures

- libraries (left): http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right): http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses: http://www.metrogroup.de/servlet/PB/menu/1114920_l1/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/