Pānini's Šivasūtras

On the minimality of Pānini's Śivasūtras

Wiebke Petersen

Institute of Language and Information University of Düsseldorf, Germany petersew@uni-duesseldorf.de

Pondicherry, 9th January 2009

अइउण्। ऋलक्। एओङ्। ऐऔच्। हयवरट्। लण। ञमङणनम। झमञ। घढधष। जबगडदश। खफछठथचटतव। कपय। शषसर। हल।

Pāṇini's Śivasūtras

Pānini's Śivasūtras

•00000

```
अइउण्। ऋऌक्। एओङ्। ऐऔच्। हयवरट्।
लण्। ञमङणनम्। झभञ्। घढधष्। जबगडदश्।
खफछठथचटतव्। कपय्। श्रषसर्। हल्।
```

```
\begin{array}{lll} a \cdot i \cdot un & r \cdot lk & e \cdot on & ai \cdot auc & hayavarat \\ lan & \tilde{n}amananam & jhabha\tilde{n} & ghadhadhas & jabagadadas \\ khaphachathathacatatav & kapay & sasasar & hal \\ \end{array}
```

Pānini's Śivasūtras in tabular form

Pānini's Śivasūtras

000000

1.	а	i	u			Ņ
2.				ŗ	ļ	K
1. 2. 3. 4. 5. 6. 7.		е	О			Ņ K Ņ
4.		ai	au			C
5.	h	У	V	r		C Ţ Ņ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	d	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	p ś				Υ
13.		ś	ķ	S		R
14.	h					L

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pānini's Śivasūtras in tabular form

Pānini's Śivasūtras

000000

1.	a	i	u			Ņ
2.				ŗ	ļ	
2. 3. 4. 5. 6. 7.		е	0			K N C T Ņ
4.		ai	au			C
5.	h	У	V	r		Ţ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ṣ Ś
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	Ş	S		R
14.	h					L

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's Śivasūtras in tabular form

Pānini's Śivasūtras

000000

1.	a	i	u			Ņ
2.				ŗ	į	K
2. 3. 4. 5.		е	0			Ň
4.		ai	au			C
	h	у	V	r		Ţ
6.					- 1	Ņ Ţ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	ģ	d	Ś
	j kh	b ph	g ch	ḍ ṭh	d th	Ś
10.						Ś
10.		ph	ch	ţh	th	Ś V Y
10. 11.	kh		ch	ţh	th	V
10. 11.	kh	ph	ch c	ţh ţ	th	V Y

anubandha

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। kapay | śasasar | hal |

Pānini's Śivasūtras in tabular form

Task

Pānini's Śivasūtras

000000

1.	a	i	u			Ņ
2.				ŗ	į	K
3.		е	0			N C T N
4. 5.		ai	au			C
5.	h	у	V	r		Ţ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	M
8.	jh	bh				
9.			gh	фh	dh	Ñ Ṣ Ś
10.	j	b	g	d	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		ś	ş	S		R
14.	h					L

anubandha

अइउण। ऋऌक। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। kapay | śasasar | hal |

Pratyāhāras

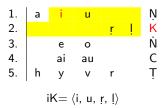
Pānini's Śivasūtras

000000

- a pratyāhāra is a pair of a sound and an anubandha
- it denotes the continuous sequence of sounds in the interval between the sound and the anubandha

Pratyāhāras

Pānini's Śivasūtras


000000

- a pratyāhāra is a pair of a sound and an anubandha
- it denotes the continuous sequence of sounds in the interval between the sound and the anubandha

Pratyāhāras

Pānini's Śivasūtras

000000

- a pratyāhāra is a pair of a sound and an anubandha
- it denotes the continuous sequence of sounds in the interval between the sound and the *anubandha*

Pānini's Śivasūtras

000000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

example: final devoicing

Pānini's Šivasūtras

000000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

example: final devoicing

$$\rightarrow$$

Pānini's Šivasūtras

000000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- analysis: [ik]_{gen}[yaṇ]_{nom}[ac]_{loc}
- modern notation: [iK] \rightarrow [yN]/_ [aC]

Pānini's Šivasūtras

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

Pānini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yanaci (इको यणचि)
- analysis: [ik]gen[yan]nom[ac]loc
- modern notation: $[iK] \rightarrow [yN]/$ [aC]

Pānini's Śivasūtras

00000

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- \bullet $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / _ \langle a, i, u, r, l, e, o, ai, au \rangle$

Pānini's Śivasūtras

00000

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- ullet $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / _ \langle a, i, u, r, l, e, o, ai, au \rangle$

Pānini's Śivasūtras

00000

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- ullet $\langle i, u, r, ! \rangle \rightarrow \langle y, v, r, l \rangle / _ \langle a, i, u, r, !, e, o, ai, au \rangle$

Pānini's Šivasūtras

total list:

aiuŅṛļK eoŃ aiauC hyvrŢ lŅ ñmṅṇnM jhbhÑ ghḍhdhṢ jbgddŚ khphchththcttV kpY śssR hL

- 1 total list is of minimal length;
- 2 sound list is of minimal length;
- anubandha list is of minimal length;
- total list is as short as possible while the anubandha list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

Pānini's Šivasūtras

sound list:

aiu rl eo aiau hyvr l ñmṅṇn jhbh ghḍhdh jbgdd khphchththctt kp śss h

- total list is of minimal length;
- 2 sound list is of minimal length;
- anubandha list is of minimal length;
- 4 total list is as short as possible while the *anubandha* list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

Pānini's Šivasūtras

anubandha list:

- 1 total list is of minimal length;
- sound list is of minimal length;
- anubandha list is of minimal length;
- total list is as short as possible while the anubandha list is minimal;
- 5 total list is as short as possible while the sound list is minimal;

Task

Pānini's Šivasūtras

aiuNrlKeoN aiauChyvrTlN ñmnnnMjhbhÑghdhdhS ibgdd\$ khphchththcttV kpY sssR hL

- total list is of minimal length;
- sound list is of minimal length;
- anubandha list is of minimal length;
- total list is as short as possible while the anubandha list is minimal;
- total list is as short as possible while the sound list is minimal;

Application

Possible minimality criteria

Task

Pānini's Šivasūtras

aiuNrlKeoN aiauChyvrTlN ñmnnnMjhbhÑghdhdhS ibgdd\$ khphchththcttV kpY sssR hL

- total list is of minimal length;
- sound list is of minimal length;
- anubandha list is of minimal length;
- 1 total list is as short as possible while the anubandha list is minimal;
- 5 total list is as short as possible while the sound list is minimal;
- ⇒ duplicating sounds is worse than adding *anubandhas*

Principle of economy

Staal 1962

Pānini's Šivasūtras

Another general principle is also implicitly used by Pānini. This is the famous economy criterion [...] In accordance with this principle each linguistic rule should be given in the shortest possible form, whereas the number of metalinguistic symbols should be reduced as far as possible.

⇒ 5. criterion of minimality: total list is as short as possible while the sound list is minimal

Example: semi-formal argument

Kiparsky 1991

Pānini's Šivasūtras

The reasoning from economy goes like this. To be grouped together in a pratyāhāra, sounds must make up a continuous segment of the list. Economy requires making the list as short as possible, which means avoiding repetitions of sounds, and using as few markers as possible.

Consequently, if class A properly includes class B, the elements shared with B should be listed last in A; the marker that follows can then be used to form pratyāhāras for both A and B. In this way the economy principle, by selecting the shortest grammar, determines both the ordering of sounds and the placement of markers among them.

Example: semi-formal argument

Kiparsky 1991

Pānini's Šivasūtras

The reasoning from economy goes like this. To be grouped together in a pratyāhāra, sounds must make up a continuous segment of the list. Economy requires making the list as short as possible, which means avoiding repetitions of sounds, and using as few markers as possible. Consequently, if class A properly includes class B, the elements shared with B should be listed last in A; the marker that follows can then be used to form pratyāhāras for both A and B. In this way the economy principle, by selecting the shortest grammar, determines both the ordering of sounds and the placement of markers among them.

Example: semi-formal argument

Śivasūtras:

Pānini's Šivasūtras

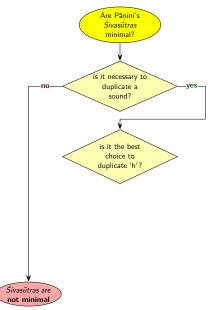
aiuNrlKeoNaiauChyvrTlNñmṅnnMjhbhÑghdhdhS ibgddŚ khphchththcttV kpY śssR hL

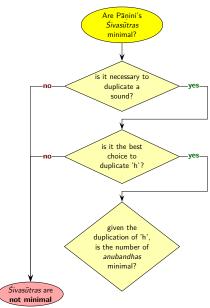
```
aK = \{a, i, u, r, f\}, iK = \{i, u, r, f\} \text{ and } uK = \{u, r, f\} \Rightarrow a < i < u < r, f\}
but:
ihL =
{h, s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
ihR =
{s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
ihY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, i, dh, dh, gh, bh, ih\}
ih\dot{S} = \{d, d, g, b, i, dh, dh, gh, bh, ih\} and
ihS = \{dh, dh, gh, bh, ih\}
\Rightarrow h < s, s, \leq p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, i <
dh, dh, gh, bh, jh
```

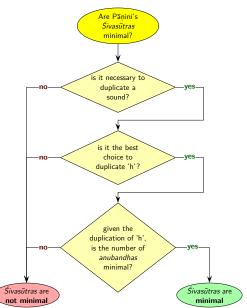
Application

Example: semi-formal argument

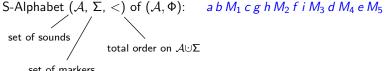
Śivasūtras:


Pānini's Šivasūtras


aiuN rlK eoN aiauC hyvrŢ lŅ ñmṅṇnM jhbhN ghḍhdhŞ ibgddŚ khphchththcttV kpY śssR hL


```
aK = \{a, i, u, r, l\}, iK = \{i, u, r, l\} \text{ and } uK = \{u, r, l\} \Rightarrow a < i < u < r, l\}
but:
ihL =
{h, s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
ihR =
{s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh}
jhY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh\}
ih\hat{S} = \{d, d, g, b, i, dh, dh, gh, bh, ih\} and
ihS = \{dh, dh, gh, bh, ih\}
\Rightarrow h < s, s, \acute{s} < p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, j <
dh. dh. gh. bh. jh
```

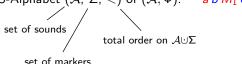
Are Pāṇini's Śivasūtras minimal?



Pānini's Śivasūtras

```
set of classes (A, \Phi): A = \{a, b, c, d, e, f, g, h, i\}
                                      \Phi = \{ \{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\} \}
```

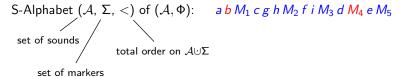

set of markers


Pānini's Śivasūtras

```
set of classes (A, \Phi): A = \{a, b, c, d, e, f, g, h, i\}
                                      \Phi = \{ \{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\} \}
```

S-Alphabet $(A, \Sigma, <)$ of (A, Φ) : $ab M_1 cg h M_2 f i M_3 d M_4 e M_5$ set of markers

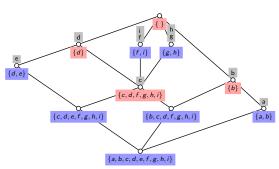
Pānini's Śivasūtras


```
set of classes (A, \Phi): A = \{a, b, c, d, e, f, g, h, i\}
                                 \Phi = \{ \{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\} \}
S-Alphabet (A, \Sigma, <) of (A, \Phi): a b M_1 c g h M_2 f i M_3 d M_4 e M_5
```


Pānini's Šivasūtras

```
set of classes (A, \Phi): A = \{a, b, c, d, e, f, g, h, i\}

\Phi = \{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}
```

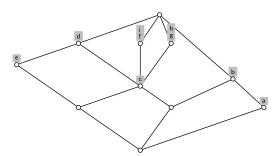


 \Rightarrow (A, Φ) is S-encodable without duplications

Pānini's Śivasūtras

set of classes
$$(A, \Phi)$$
: $A = \{a, b, c, d, e, f, g, h, i\}$

$$\Phi = \{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$


concept lattice of (A, Φ)

Terminology: S-encodability

Pānini's Śivasūtras

set of classes
$$(A, \Phi)$$
: $A = \{a, b, c, d, e, f, g, h, i\}$

$$\Phi = \{\{d, e\}, \{a, b\}, \{b, c, d, f, g, h, i\}, \{f, i\}, \{c, d, e, f, g, h, i\}, \{g, h\}\}$$

concept lattice of (A, Φ)

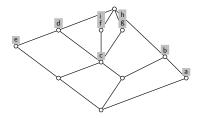
Generalized task

- Given the sound classes which are denoted by pratyāhāras in Pāṇini's grammar, do the Sivasūtras fulfill the 5th minimality criterion?
- Does an S-alphabet which fulfills the 5th minimality criterion exists for any arbitrary set of classes and how can it be constructed?

Generalized task

- Given the sound classes which are denoted by pratyāhāras in Pāṇini's grammar, do the Śivasūtras fulfill the 5th minimality criterion?
- Does an S-alphabet which fulfills the 5th minimality criterion exists for any arbitrary set of classes and how can it be constructed?

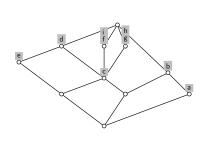
Generalized task

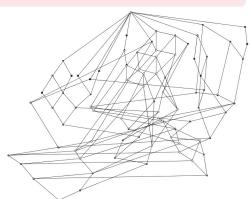

- Given the sound classes which are denoted by pratyāhāras in Pāṇini's grammar, do the Śivasūtras fulfill the 5th minimality criterion?
- Does an S-alphabet which fulfills the 5th minimality criterion exists for any arbitrary set of classes and how can it be constructed?

S-encodability \Rightarrow planarity

Pānini's Śivasūtras

Main theorem on S-encodability (part 1)

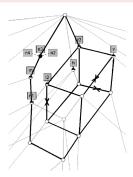

The concept lattice of (A, Φ) is planar if (A, Φ) is S-encodable without duplications



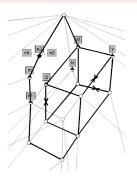
S-encodability ⇒ planarity

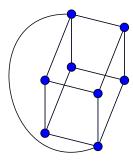
Main theorem on S-encodability (part 1)

The concept lattice of (\mathcal{A},Φ) is planar if (\mathcal{A},Φ) is S-encodable without duplications

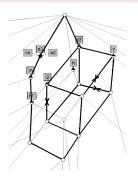


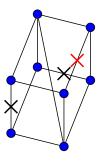
graph of the concept lattice of Pāṇini's


Criterion of Kuratowski

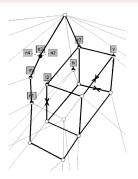


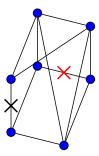
Criterion of Kuratowski



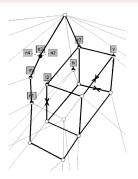


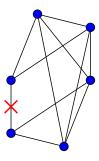
Criterion of Kuratowski



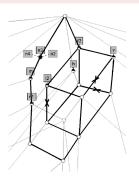


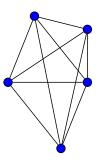
Criterion of Kuratowski



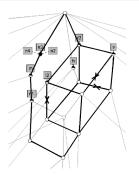


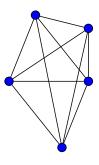
Criterion of Kuratowski



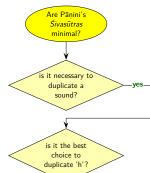


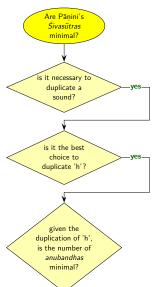
Criterion of Kuratowski

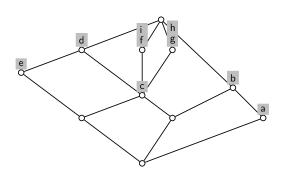



Criterion of Kuratowski

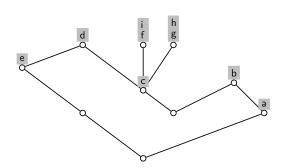
Pānini's Śivasūtras

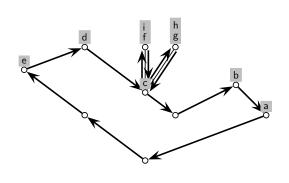

A graph which has the graph as a minor is not planar.



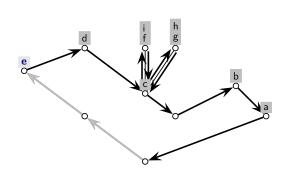


The set of classes given by Pānini's pratyāhāras is not S-encodable without duplications!

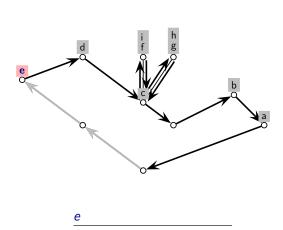



procedure

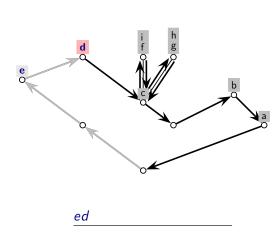
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.


procedure

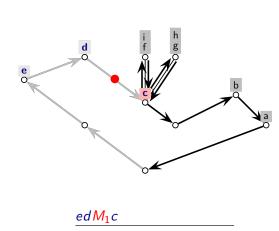
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.


procedure

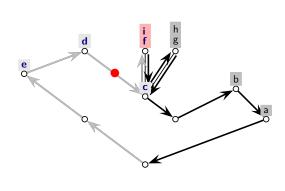
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before


procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

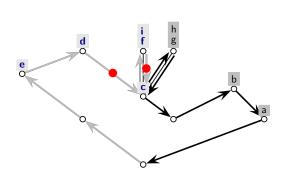

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.


procedure

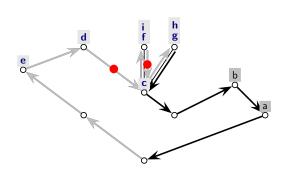
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

procedure


- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

edM₁cfi

procedure

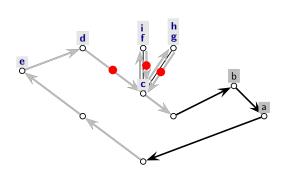

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

 edM_1cfiM_2

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

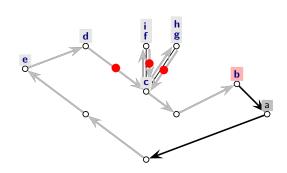
 $ed M_1 cfi M_2 gh$


procedure

Start with the empty sequence and choose a walk through the S-graph:

 While moving upwards do nothing.

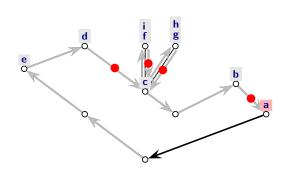
Summary


- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

 $edM_1cfiM_2ghM_3$

procedure

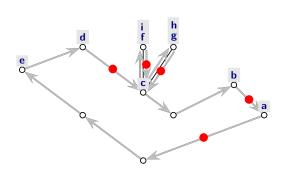
- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before



 $edM_1cfiM_2ghM_3b$

procedure

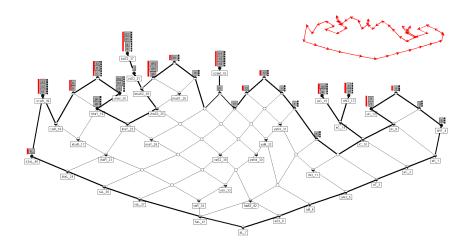
Start with the empty sequence and choose a walk through the S-graph:


- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

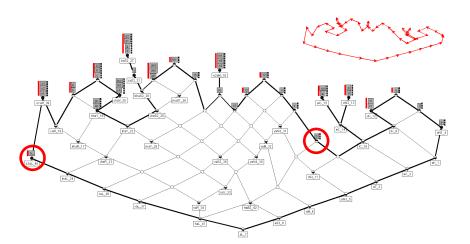
 $ed M_1 cfi M_2 gh M_3 b M_4 a$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

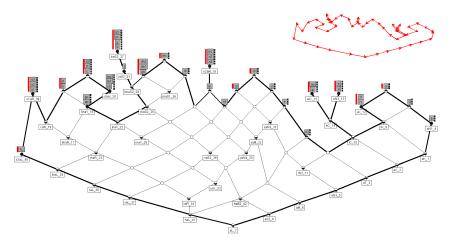


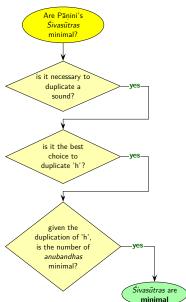
 $edM_1cfiM_2ghM_3bM_4aM_5$


procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

Enlarged concept lattice of Pāṇini's pratyāhāras


Enlarged concept lattice of Pāṇini's pratyāhāras


 Pāṇini's Śivasūtras
 Task
 Generalization
 Results
 Application
 Summary

 ○○○○○
 ○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○

Enlarged concept lattice of Pāṇini's pratyāhāras

With the *Śivasūtras* Pāṇini has chosen one out of nearly 12 million S-alphabets which fulfill the 5th minimality criterion!

The Problem:

Pānini's Šivasūtras

Sometimes we are forced to order things (nearly) linearly, e.g. in . . .

Pāṇini's Śivasūtras

Warehouses

Pāṇini's Śivasūtras

Stores

Pānini's Šivasūtras

Solution to the problem: revitalize Pānini's Śivasūtra technique

Pānini's Śivasūtra technique

अइउण। ऋॡक। एओङ। ऐऔच। हयवरट। लण्। ञमङ्गनम्। झमञ्। घढधष्। जबगडदश्। खफछठथचटतव। कपय। शषसर। हल।

```
a \cdot i \cdot un \mid r \cdot lk \mid e \cdot on \mid ai \cdot auc \mid hayavarat \mid
|lan| \tilde{n}ama\dot{n}ananam| jhabha\tilde{n}| ghadhadhas| jabagadadas|
khaphachathathacatatav | kapay | śasasar | hal |
```

Pānini's Śivasūtras

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

Pānini's Śivasūtras

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

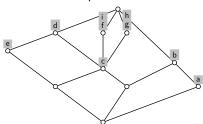
S-sortable

general hierarchy

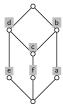
Pānini's Śivasūtras

Objects in libraries, ware-houses, and stores are only *nearly* linearly arranged:

⇒ Second (and third) dimension can be used in order to avoid duplications


Pānini's Šivasūtras

Main theorem on S-encodability

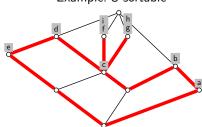

A set of classes (A, Φ) is S-encodable without duplications if one of the following equivalent statements is true:

- ① The concept lattice of (A, Φ) is a Hasse-planar graph and for any $a \in \mathcal{A}$ there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes $(A, \tilde{\Phi})$ is Hasse-planar. $(\tilde{\Phi} = \Phi \cup \{\{a\}\})$ $a \in \mathcal{A}\}$
- The Ferrers-graph of the enlarged $(A, \tilde{\Phi})$ -context is bipartite.

Example: S-sortable

Example: not S-sortable

 $\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}$


Pānini's Šivasūtras

Main theorem on S-encodability

A set of classes (A, Φ) is S-encodable without duplications if one of the following equivalent statements is true:

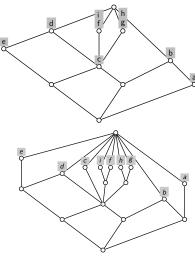
- The concept lattice of (A, Φ) is a Hasse-planar graph and for any $a \in A$ there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes $(\mathcal{A}, \tilde{\Phi})$ is Hasse-planar. $(\tilde{\Phi} = \Phi \cup \{\{a\} \mid a \in \mathcal{A}\})$
- 3 The Ferrers-graph of the enlarged $(A, \tilde{\Phi})$ -context is bipartite.

Example: S-sortable

Example: not S-sortable

 $\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}$

Pānini's Šivasūtras

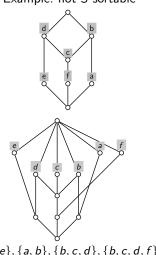

Main theorem on S-encodability

A set of classes (A, Φ) is S-encodable without duplications if one of the following equivalent statements is true:

- **1** The concept lattice of (A, Φ) is a Hasse-planar graph and for any $a \in \mathcal{A}$ there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes (A, Φ) is Hasse-planar. ($\tilde{\Phi} = \Phi \cup \{\{a\}\}$ $a \in \mathcal{A}\}$
- The Ferrers-graph of the enlarged $(A, \tilde{\Phi})$ -context is bipartite.

Example: S-sortable

Application


Pānini's Šivasūtras

Main theorem on S-encodability

A set of classes (A, Φ) is S-encodable without duplications if one of the following equivalent statements is true:

- **1** The concept lattice of (A, Φ) is a Hasse-planar graph and for any $a \in \mathcal{A}$ there is a node labeled a in the S-graph.
- 2 The concept lattice of the enlarged set of classes (A, Φ) is Hasse-planar. ($\tilde{\Phi} = \Phi \cup \{\{a\}\}$ $a \in \mathcal{A}\}$
- The Ferrers-graph of the enlarged $(A, \tilde{\Phi})$ -context is bipartite.

Example: not S-sortable

$$\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}$$

Pānini's Šivasūtras

Main theorem on S-encodability

A set of classes (A, Φ) is S-encodable without duplications if one of the following equivalent statements is true:

- **1** The concept lattice of (A, Φ) is a Hasse-planar graph and for any $a \in \mathcal{A}$ there is a node labeled a in the S-graph.
- The concept lattice of the enlarged set of classes $(A, \tilde{\Phi})$ is Hasse-planar. ($\tilde{\Phi} = \Phi \cup \{\{a\}\}$ $a \in \mathcal{A}\}$
- 3 The Ferrers-graph of the enlarged (A, Φ) -context is bipartite.

Advantages:

- The Ferrers-graph is constructed on the formal context.
- Its bipartity can be checked algorithmically.

The story is much more intricate

- We have not shown that Pāṇini's technique for the representation of sound classes is optimal.
- Even we have not shown that he used his technique in an optimal way.

The story is much more intricate

- We have not shown that Pānini's technique for the representation of sound classes is optimal.
- Even we have not shown that he used his technique in an optimal way.

Pānini's Šivasūtras Literature

- Kiparsky, P. (1991), Economy and the construction of the Śivasūtras. In: M. M. Deshpande & S. Bhate (eds.), Pāninian Studies, Michigan: Ann Arbor.
- Petersen, W. (2008), Zur Minimalität von Pāninis Śivasūtras Eine Untersuchung mit Mitteln der Formalen Begriffsanalyse. PhD thesis, university of Düsseldorf.
- Petersen, W. (2009), On the Construction of Sivasutra-Alphabets. In: A. Kulkarni and G. Huet (eds.): Sanskrit Computational Linguistics. LNCS 5406, Springer.
- Staal, F. (1962), A Method of Linguistic Description. Language 38, 1-10.

Origin of Pictures

- libraries (left): http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right): http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses: http://www.metrogroup.de/servlet/PB/menu/1114920_l1/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/