Induction of Classifications from Linguistic Data

speaker: Wiebke Petersen

(Osswald/Petersen 2002)
Example context:
Inflectional paradigms of German nouns

<table>
<thead>
<tr>
<th></th>
<th>gender</th>
<th>sing nom</th>
<th>sing gen</th>
<th>sing dat</th>
<th>sing acc</th>
<th>plur nom</th>
<th>plur gen</th>
<th>plur dat</th>
<th>plur acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herr</td>
<td>masc</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Name</td>
<td>masc</td>
<td>*</td>
<td>*_ns</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Staat</td>
<td>masc</td>
<td>*</td>
<td>*_s</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Hemd</td>
<td>neut</td>
<td>*</td>
<td>*_s</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Farbe</td>
<td>fem</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Bett</td>
<td>neut</td>
<td>*</td>
<td>*_s</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
</tr>
<tr>
<td>Onkel</td>
<td>masc</td>
<td>*</td>
<td>*_s</td>
<td>*</td>
<td>*</td>
<td>*_n</td>
<td>*_n</td>
<td>*_n</td>
<td>*</td>
</tr>
<tr>
<td>Ufer</td>
<td>neut</td>
<td>*</td>
<td>*_s</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*_n</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Example Concept Lattice:

Inflectional paradigms of German nouns
Examples of linguistic classification

And/Or trees (e.g. Koenig, 1999)
Classification as (First Order) Theory

And/OR trees (e.g. Koenig, 1999)

\[
\begin{align*}
A & \subseteq B \text{ stands for } \forall x (Ax \rightarrow Bx) \\
\Lambda & \text{ stands for } \lambda x (x \neq x) \\
V & \text{ stands for } \lambda x (x = x)
\end{align*}
\]

nom \wedge \text{gen } \subseteq \Lambda, \ldots, \text{sing } \wedge \text{plur } \subseteq \Lambda \text{ (ISNOTA)}

nom \lor \text{gen} \lor \text{dat} \lor \text{acc} \subseteq \text{nominal}, \ldots \text{ (ISA)}

\text{nominal } \subseteq \text{nom} \lor \text{gen} \lor \text{dat} \lor \text{acc}, \ldots \text{ (exhaustiveness)}
Examples of linguistic classification

Taxonomic trees (after Eisenberg, 1999)
The canonical universe $C(\Gamma)$

For each observational theory Γ over a set of primitive predicates Σ, there is a canonical model $M(\Gamma) = (C(\Gamma), \models)$, where $X \models p$ iff $p \in X$, for every $X \in C(\Gamma)$ and $p \in \Sigma$. \models is inductively extended to $T[\Gamma]$, the term algebra of observational predicates over Σ. $C(\Gamma)$ consists of the Γ-closed consistent subsets of Σ.
Construction of the canonical universe

Theory: (Mathematics and linguistics are the only formal sciences)

\[
\text{formal} \land \text{science} \subseteq \text{mathematics} \lor \text{linguistics}
\]

\[
\text{formal} \land \text{science} \supseteq \text{mathematics} \lor \text{linguistics}
\]

Canonical universe:

- mathematical linguistics: \{m, l, f, s\}
- mathematical linguistics: \{m, f, s\}
- formal: \{f\}
- formal: \{s\}
- something: \emptyset

Diagram:

```
  something
     /\   /
    /   /  \\
   /     /    \\
  ∅   formal \{f\} \{s\} science
     /\   /
    /   /  \\
   /     /    \\
  mathematics \{m, f, s\} \{l, f, s\} linguistics
     /\   /
    /   /  \\
   /     /    \\
  {m, f, s} mathematical linguistics
```
Relationship between Λ-free Horn theories and Concept Lattices

$\Gamma_{\Lambda\text{-free Horn, } M} \leftrightarrow \mathcal{I}_\mathcal{C}$

canonical universe

set of attribute implications

concept lattice
Simple inheritance

no disjunctions, no conjunctions, no Λ or V

$\Gamma = \{d \subseteq c, c \subseteq a, e \subseteq a, e \subseteq b\}$

$C(\Gamma)$: closed under intersection and union

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>x_2</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>x_7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
no disjunctions

\[\Gamma = \{ b \land c \subseteq d, \ d \subseteq c, \ c \subseteq a, \ e \subseteq a, \ e \subseteq b \} \]

\[C(\Gamma): \text{closed under intersection} \]
Observational Theory

\[\Gamma = \{ V \subseteq a \lor b, a \land b \subseteq c \lor e, c \land e \subseteq \Lambda, \]
\[b \land c \subseteq d, d \subseteq c, c \subseteq a, e \subseteq a, e \subseteq b \} \]
Concept lattice $\cong \wedge$-free Horn theory
AOC-poset

sing dat:* ∧ plur nom:*_n ⊆ gender:fem ∨ sing gen:*_s
Relationship between a theory Γ and its canonical universe $C(\Gamma)$

<table>
<thead>
<tr>
<th>Class of Γ</th>
<th>Closure properties of $C(\Gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>local membership</td>
</tr>
<tr>
<td>Horn</td>
<td>nonempty intersection + directed union</td>
</tr>
<tr>
<td>Λ-free Horn</td>
<td>intersection + directed union</td>
</tr>
<tr>
<td>simple inheritance</td>
<td>intersection + union</td>
</tr>
<tr>
<td>exclusion</td>
<td>subsets + finitely bounded union</td>
</tr>
<tr>
<td>simple inheritance + exclusion</td>
<td>nonempty intersection + finitely bounded union</td>
</tr>
</tbody>
</table>
Examples of linguistic classification
Systemic networks (e.g. Winograd, 1983)

Examples of linguistic classification
Systemic networks (e.g. Winograd, 1983)

Examples of linguistic classification
Systemic networks (e.g. Winograd, 1983)

Examples of linguistic classification
Systemic networks (e.g. Winograd, 1983)