On the minimality of Pāṇini's Śivasūtras

Wiehke Petersen

Institute of Language and Information University of Düsseldorf, Germany petersew@uni-duesseldorf.de

University of English and Foreign Languages, 19. January 2009

अइउण्। ऋऌक्। एओङ्। ऐऔच्। हयवरट्। लण्। ञमङणनम्। झभञ्। घढधष्। जबगडदश्। खफछठथचटतव्। कपय्। शषसर्। हल्।

Phonological Rules

Introduction

•0000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/c_D$$

example: final devoicing

•0000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C_D}$$

example: final devoicing

Phonological Rules

Introduction

00000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- analysis: [ik]_{gen}[yaṇ]_{nom}[ac]_{loc}
- modern notation: [iK] \rightarrow [yN]/_ [aC]

Phonological Rules

Introduction

00000

modern notation

A is replaced by B if preceded by C and succeeded by D.

$$A \rightarrow B/_{C}$$
 D

Pāṇini's linear Coding

A + genitive, B + nominative, C + ablative, D + locative.

example

- sūtra 6.1.77: iko yaṇaci (इको यणचि)
- ullet analysis: $[ik]_{gen}[yan]_{nom}[ac]_{loc}$
- modern notation: [iK] \rightarrow [yN]/_[aC]

00000

Pāṇini faced the problem of giving a linear representation of the nonlinear system of sound classes.

A similar problem occurs in ...

00000

00000

Pāṇini's solution: Śivasūtras

Introduction

а	i e ai	u o au	ŗ	!	Ņ K N C T Ņ
h	У	V	r		Ţ
				ı	
ñ	m	'n	ņ	n	Μ
jh	bh				Ñ
		gh	фh	dh	Ñ Ş Ś
j	b	g	ģ	d	Ś
kh	ph	ch	ţh	th	
		С	ţ	t	V
k	р				Υ
	ś	ş	S		R
h		•			L
	h ñ jh j kh	e ai h y ñ m jh bh j b kh ph k p ś	e o ai au h y v n n n n n n n n n n n n n n n n n n	e o ai au h y v r n m n n n n n h n h h bh gh dh h ch th c t t k p s s s	r ! e o ai au h y v r n m n n jh bh gh dh dh j b g d d kh ph ch th th c t t k p ś s s

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's solution: Śivasūtras

Introduction

1.	а	i	u			Ņ
2.				ŗ	ļ	K N C T Ņ
2. 3. 4. 5.		е	0			Ň
4.		ai	au			C
5.	h	у	V	r		Ţ
6.					- 1	Ņ
7.	ñ	m	'n	ņ	n	Μ
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	d	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	Ş	S		R L
14.	h					L

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pāṇini's solution: Śivasūtras

Introduction

1.	а	i	u			Ņ
2.				ŗ	ļ	K
2. 3. 4. 5.		е	0			Ň C
4.		ai	au			C
	h	у	V	r		Ņ Ņ
6.					- 1	Ņ
7. 8.	ñ	m	'n	ņ	n	M
8.	jh	bh				Ñ
9.			gh	фh	dh	Ñ Ş Ś
10.	j	b	g	ģ	d	Ś
11.	kh	ph	ch	ţh	th	
			С	ţ	t	V
12.	k	р				Υ
13.		p ś	Ş	S		R
14.	h					L

anubandha

अइउण्। ऋऌक्। $a \cdot i \cdot un \mid r \cdot lk \mid$ एओङ्। ऐऔच्। $e \cdot o\dot{n} \mid ai \cdot auc \mid$ हयवरट्। लण्। hayavarat | lan |ञमङणनम्। झभञ्। $\tilde{n}ama\dot{n}ananam \mid jhabha\tilde{n} \mid$ घढधष। जबगडदञ्च। ghadhadhas | jabagadadaś | खफछठथचटतव। khaphachathathacatatavकपय। शषसर। हल। $kapay \mid śasasar \mid hal \mid$

Pratyāhāras

```
1. | a i u N
2. | r ! K
3. | e o N
4. | ai au C
5. | h y v r T
```

Pratyāhāras

```
1.
      а
                                    Ņ
K
N
                   u
2.
3.
                   o
4.
            ai
                  au
5.
      h
            У
                   ٧
                         r
                 iΚ
```

Pratyāhāras

1. | a | i | u | | N
2. | r | J | K
3. | e | o | N
4. | ai | au | C
5. | h | y | v | r | T
$$iK = \langle i, u, r, l \rangle$$

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- ullet \langle i, u, ṛ, ! $\rangle \rightarrow \langle$ y, v, r, ! $\rangle/_\langle$ a, i, u, ṛ, !, e, o, ai, au \rangle

Analysis of iko yaṇaci: $[iK] \rightarrow [yN]/[aC]$

- $[iK] \rightarrow [yN]/_[aC]$
- $\langle i, u, r, l \rangle \rightarrow \langle y, v, r, l \rangle / (a, i, u, r, l, e, o, ai, au)$

General problem of S-sortability

Introduction

Given a set of classes, order the elements of the classes (without duplications) in a linear order (in a list) such that each single class forms a continuous interval with respect to that order.

- The target orders are called S-orders
- A set of classes is S-sortable if it has an S-order

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers (*anubandhas*) such that each single class can be denoted by a sound-marker-pair (*pratyāhāra*).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker (anubandha) behind each element.

Given the set of classes $\{\{a,b\},\{a,b,c\},\{a,b,c,d\}\}$, the order abcd is one of its S-orders and $aM_1bM_2cM_3dM_4$ is one of its S-alphabets.

General problem of Śivasūtra-alphabets (S-alphabets)

Given a set of classes, find an S-order of the elements of the classes. Interrupt this list by markers (*anubandhas*) such that each single class can be denoted by a sound-marker-pair (*pratyāhāra*).

Note that every S-order becomes a Śivasūtra-alphabet (S-alphabet) by adding a marker (anubandha) behind each element.

Given the set of classes $\{\{a,b\},\{a,b,c\},\{a,b,c,d\}\}$, the order abcd is one of its S-orders and $aM_1bM_2cM_3dM_4$ is one of its S-alphabets.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}\$ is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}\$ is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$ is not S-sortable.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is abcghfide

abegiiiiae

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d,e\},\{a,b\},\{b,c,d\},\{b,c,d,f\}\}\$ is not S-sortable.

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

$$\{\{a,b\},\{b,c\},\{a,c\}\}\$$
 is not S-sortable.

non-S-sortable example

The set of classes:

```
\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\ is not S-sortable.
```

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$ is not S-sortable.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$ is not S-sortable.

Introduction

S-sortable example

The set of classes:

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}\$$
 is S-sortable:

one of its S-orders is

abcghfide

non-S-sortable example

The set of classes:

 $\{\{a,b\},\{b,c\},\{a,c\}\}\$ is not S-sortable.

non-S-sortable example

The set of classes:

 $\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}\$ is not S-sortable. abcde or edcba

Visualize relations

Introduction

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}$$

concept lattice

Visualize relations

Introduction

$$\{\{d,e\},\{a,b\},\{b,c,d,f,g,h,i\},\{f,i\},\{c,d,e,f,g,h,i\},\{g,h\}\}$$

concept lattice

$$\{ \{d,e\}, \{a,b\}, \{b,c,d,f,g,h,i\}, \{f,i\}, \\ \{c,d,e,f,g,h,i\}, \{g,h\} \}$$

$$\{\{d, e\}, \{a, b\}, \{b, c, d\}, \{b, c, d, f\}\}$$

Getting back to Pāṇini's problem

Introduction

 $\begin{array}{l} a \cdot i \cdot un \mid r \cdot |k| \ e \cdot on \mid ai \cdot auc \mid hayavarat \mid \\ lan \mid \tilde{n}amanananan \mid jhabhan \mid ghadhadhas \mid jabagadadas \mid \\ khaphachathathacatatav \mid kapay \mid sasasar \mid hal \mid \end{array}$

Q: Are the Śivasūtras minimal (with respect to length)?

What does minimal mean?

Introduction

```
\begin{array}{l} a \cdot i \cdot u \dot{n} \mid \dot{r} \cdot lk \mid e \cdot o \dot{n} \mid ai \cdot auc \mid \frac{\textbf{h}}{a} yavara \dot{t} \mid \\ la \dot{n} \mid \tilde{n} ama \dot{n} an am \mid jhabha \tilde{n} \mid gha \dot{d}hadha \dot{s} \mid jabaga \dot{d}ada \dot{s} \mid \\ khapha cha \dot{t}hatha ca \dot{t}atav \mid kapay \mid \dot{s} a \dot{s} asar \mid \frac{\textbf{h}}{a} al \mid \end{array}
```

The Śivasūtras are minimal if it is **im**possible rearrange the Sanskrit sounds in a new list with anubandhas such that

- each pratyāhāra forms an interval ending before an anubandha,
- 2 no sound occurs twice
- or one sound occurs twice but less anubandhas are needed.
- ⇒ duplicating a sound is worse than adding *anubandhas*

Common semi-formal argument

Śivasūtras:

Introduction

aiu Ņ rļ K eo N aiau C hyvr T l Ņ ñ m n n m jh bh N gh ḍh dh Ş j b g ḍ d Ś kh ph ch ṭh th c ṭ t V k p Y śṣs R h L

```
aK = \{a, i, u, r, f\}, iK = \{i, u, r, f\} \text{ and } uK = \{u, r, f\} \Rightarrow a < i < u < r, f\} (taken from Kiparsky 1991) but: jhL = \{h, s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh\} jhR = \{s, s, ś, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh} jhY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh} jhŚ = \{d, d, g, b, j, dh, dh, gh, bh, jh} and <math>jh$\int = \{dh, dh, gh, bh, jh}\} \Rightarrow h < s, s, s < p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, j < dh, dh, gh, bh, jh}
```

Common semi-formal argument

Śivasūtras:

Introduction

aiu Ņ rļ K eo N aiau C hyvr T l Ņ ñ m n n m jh bh N gh ḍh dh Ş j b g ḍ d Ś kh ph ch ṭh th c ṭ t V k p Y śṣs R h L

```
aK = \{a, i, u, r, f\}, iK = \{i, u, r, f\} \text{ and } uK = \{u, r, f\} \Rightarrow a < i < u < r, f \text{ (taken from Kiparsky 1991)}  but: jhL = \{h, s, s, \acute{s}, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh \}  jhR = \{s, s, \acute{s}, p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh \}  jhY = \{p, k, t, t, c, th, th, ch, ph, kh, d, d, g, b, j, dh, dh, gh, bh, jh \}  jh\acute{s} = \{d, d, g, b, j, dh, dh, gh, bh, jh \}  and jh\acute{s} = \{dh, dh, gh, bh, jh \}  \Rightarrow h < s, s, \acute{s} < p, k, t, t, c, th, th, ch, ph, kh, d < d, g, b, j < dh, dh, gh, bh, jh \}
```

Are Pāṇini's Śivasūtras minimal?

Is it necessary to duplicate a sound?

Main theorem on S-sortability (part 1a)

If a set of classes is S-sortable, then its concept lattice is Hasse-planar.

Is it necessary to duplicate a sound?

Main theorem on S-sortability (part 1a)

If a set of classes is S-sortable, then its concept lattice is Hasse-planar.

graph of the concept lattice of Panini's pratyāhāras

Criterion of Kuratowski

Introduction

Criterion of Kuratowski

Introduction

A graph which has the graph

as a minor is not planar.

Criterion of Kuratowski

Introduction

Criterion of Kuratowski

Introduction

Criterion of Kuratowski

Introduction

Criterion of Kuratowski

Introduction

Criterion of Kuratowski

Introduction

A graph which has the graph as a minor is not planar.

There is no S-alphabet for the set of classes given by Pānini's pratyāhāras without duplicated elements!

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a labeled node is reached, add the labels in arbitrary order to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached. add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

S-alphabets with a minimal number of markers

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

procedure

000000000000

Minimality of the Sivasūtras

Start with the empty sequence and choose a walk through the S-graph:

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

 edM_1c

S-alphabets with a minimal number of markers

 edM_1cfi

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

S-alphabets with a minimal number of markers

 $ed M_1 cfi M_2$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

 $ed M_1 cfi M_2 gh$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

S-alphabets with a minimal number of markers

 $edM_1cfiM_2ghM_3$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before

S-alphabets with a minimal number of markers

 $ed M_1 cfi M_2 gh M_3 b$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

 $edM_1cfiM_2ghM_3bM_4a$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

S-alphabets with a minimal number of markers

 $edM_1cfiM_2ghM_3bM_4aM_5$

procedure

- While moving upwards do nothing.
- While moving downwards along an edge add a new marker to the sequence unless its last element is already a marker.
- If a sound is reached, add the sound to the sequence, unless it has been added before.

Concept lattice of Pānini's pratyāhāras with duplicated h

Concept lattice of Pānini's pratyāhāras with duplicated h

Concept lattice of Pānini's pratyāhāras with duplicated h

With the Śivasūtras Pāṇini has chosen one out of nearly 12 million minimal S-alphabets!

Introduction

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

- For physical objects ,duplicating' means ,adding copies'
- Adding copies is annoying but often not impossible
- Ordering objects in an S-order may
 - improve user-friendliness
 - save time
 - save space
 - simplify visual representations of classifications

tree

S-sortable

general hierarchy

Introduction

Objects in libraries, ware-houses, and stores are only *nearly* linearly arranged:

 \Rightarrow Second (and third) dimension can be used in order to avoid duplications

Open problems

Introduction

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

Open problems

Introduction

What explains the actual structure of the Śivasūtras?

- principle of homorganic continuity (Staal, 1962)
- principle of historic continuity (Cardona, 1969)
- principle of economy and logic of the special case and the general case (Kiparsky 1991) or Pāṇini's razor (Kiparsky 2007)

The presented approach cannot give an answer to this question

The story is much more intricate

- We have neither shown that Pāṇini's technique for the representation of sound classes is optimal
- nor that he has used his technique in an optimal way.

Literature

- Kiparsky, P. (1991), Economy and the construction of the Śivasūtras. In: M. M. Deshpande & S. Bhate (eds.), *Pāṇinian Studies*, Michigan: Ann Arbor.
- Petersen, W. (2008), Zur Minimalität von Pāṇinis Śivasūtras Eine Untersuchung mit Mitteln der Formalen Begriffsanalyse. PhD thesis, university of Düsseldorf.
- Petersen, W. (2009), On the Construction of Sivasutra-Alphabets. In: A. Kulkarni and G. Huet (eds.): Sanskrit Computational Linguistics. LNCS 5406, Springer.
- Staal, F. (1962), A Method of Linguistic Description. Language 38, 1-10.

Origin of Pictures

- libraries (left): http://www.meduniwien.ac.at/medizinischepsychologie/bibliothek.htm
- libraries (middle): http://www.math-nat.de/aktuelles/allgemein.htm
- libraries (right): http://www.geschichte.mpg.de/deutsch/bibliothek.html
- warehouses: http://www.metrogroup.de/servlet/PB/menu/1114920_l1/index.html
- stores: http://www.einkaufsparadies-schmidt.de/01bilder01/