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Abstract. In Pān. ini’s grammar of Sanskrit one finds the Śivasūtras, a table which defines the natural
classes of phonological segments in Sanskrit by intervals. We present a formal argument which
shows that, using his representation method, Pān. ini’s way of ordering the phonological segments
to represent the natural classes is optimal. The argument is based on a strictly set-theoretical point
of view depending only on the set of natural classes and does not explicitly take into account the
phonological features of the segments, which are, however, implicitly given in the way a language
clusters its phonological inventory. The key idea is to link the graph of the Hasse-diagram of the set of
natural classes closed under intersection to Śivasūtra-style representations of the classes. Moreover,
the argument is so general that it allows one to decide for each set of sets whether it can be represented
with Pān. ini’s method. Actually, Pān. ini had to modify the set of natural classes to define it by the
Śivasūtras (the segment h plays a special role). We show that this modification was necessary and,
in fact, the best possible modification. We discuss how every set of classes can be modified in such a
way that it can be defined in a Śivasūtra-style representation.1
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1. Pān. ini’s Śivasūtras

Among grammars, Pān. ini’s description of Sanskrit takes up an outstanding posi-
tion. On the one hand, it is one of the oldest recorded grammars but also one of
the most complete grammars of any language. The text of the grammar is rather
accurately preserved, as it consists of sūtras designed for ritual repetition. On the
other hand, this grammar attracts attention because it anticipates many structural
and methodological approaches of modern linguistic theories.

“Modern linguistics acknowledges it as the most complete generative grammar
of any language yet written, and continues to adopt technical ideas from it.”
(Kiparsky, 1994)

Or, as Bloomfield states about this grammar:

“The descriptive grammar of Sanskrit, which Pān. ini brought to its perfection,
is one of the greatest monuments of human intelligence and an indispensable
model for the description of languages.” (Bloomfield, 1929)
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Table I. Pān. ini’s Śivasūtras.

1. a i u .N
2. .r .l K
3. e o Ṅ
4. ai au C
5. h y v r .T
6. l .N
7. ñ m ṅ .n n M
8. jh bh Ñ
9. gh .dh dh .S

10. j b g .d d Ś
11. kh ph ch .th th

c .t t V
12. k p Y
13. ś .s s R
14. h L

Table II. Example of a pratyāhāra: iC = {i,
u, .r, .l, e, o, ai, au}.

1. a i u .N
2. .r .l K
3. e o Ṅ
4. ai au C
5. h y v r .T

The grammar gives a theoretical analysis of classical Sanskrit as spoken by
the priestly class at the time of its formulation (according to Kiparsky (1994),
around 350 BC). As a whole, the grammar consists of four parts, of which the
A.s.tādhyāyı̄ plays the central role as it contains nearly 4000 rules governing how
the elements determined in the other components can be used. The Śivasūtras
form the component in which the phonological segments of the language and their
grouping in natural phonological classes, designated by pratyāhāras, is defined (a
short survey of the structure of Pān. ini’s grammar can be found in Kiparsky (1994)).
In the A.s.tādhyāyı̄ Pān. ini refers to the phonological classes in hundreds of rules.

The Śivasūtras identify 42 phonological segments and consist of 14 sūtras
(rows in Table I), each of which consists of a sequence of phonological segments
(transcribed with small letters) bounded by a marker (transcribed with a capital
letter), called anubandha. Phonological classes are denoted by abbreviations, called
pratyāhāras, consisting of a phonological segment and an anubandha. The elements
of such a class are defined by the Śivasūtras given in Table I and are the continuous
sequence of phonological segments starting with the given segment and ending with
the last segment before the anubandha. Table II gives an example of a pratyāhāra.

A typical phonological rule found in the A.s.tādhyāyı̄ is iko yan. aci, the func-
tional analysis of which is [ik]GEN[yan. ]NOM[ac]LOC. The case markers are used
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meta-linguistically and denote the role that an expression marked by a case suffix
plays in the rule. The technical expressions ik, yan. and ac belong to the meta-
language, too; they stand for the pratyāhāras iK, yN. and aC. The vowel ‘a’ in the
expression yan. fulfills two tasks: first, it serves as a linking vowel which turns the
pratyāhāra into a pronounceable syllable, and second, it prevents the consonant ‘y’
from being mistaken for the anubandha ‘Y’. The rule iko yan. aci is interpreted as
iK → [yN. ]/ [aC]. This rule states that the vowels of the class iK = {i, u, .r, .l} are
replaced by their nonsyllabic counterparts yN. = {y, v, r, l} before a vowel aC = {a,
i, u, .r, .l, e, o, ai, au}.

Altogether, 281 pratyāhāras can be constructed,2 which is more than the 42 ac-
tually referred to by rules of the A.s.tādhyāyı̄ , but it is still a small number compared
with the number of all classes that can be formed from the phonological segments,
which is 242 > 4 · 1012.

As Kornai (1993) points out clearly, the task of characterizing a phonological
system of a language is to specify the segmental inventory, phonological rules, and
the set of natural classes of phonological segments to enable generalized rules.

“What is required is a clever notation that lets us characterize any such R ⊂ S,
traditionally called a natural class, in a compact manner so that rules in terms
of natural classes are just as easy, or perhaps even easier, to deal with as rules
stated in terms of segments.” (Kornai, 1993)

The set of natural classes is externally given by the phonological patterning of
a language and it always meets two conditions: first, it is small compared to the set
of unnatural classes and second, the set of natural classes is basically closed under
intersection. Kornai (1993) stipulates that these conditions have to be reflected in
a notational device for the classes, too.

Kornai stresses that the representation device used for the notation of the classes
must make it easier to use natural classes than unnatural ones (e.g. the comple-
ment of a natural class is generally unnatural). Contemporary phonological theories
build up a structured system of phonological features that are used to character-
ize the natural classes. Instead of referring to phonological features to define a
phonological class, Pān. ini refers to intervals in a linear order of the phonological
segments. His method of defining the natural classes by pratyāhāras, denoting in-
tervals of the Śivasūtras, meets the required conditions (as does the contemporary
method).

The phonological classes of a grammar are mutually related: classes can be
subclasses of other classes, two or more classes can have common elements, etc.
These connections are naturally represented in a hierarchy. A Śivasūtra-style rep-
resentation encodes such connections in a linear form.3 The linear representation
method is so ingenious that it allows one to answer questions about the hierar-
chical relations of the classes without referring to all the elements of the classes.
For example, two classes have common elements if at least one interval boundary
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of the first lies in the interval of the second.4 An aim of this paper is to deter-
mine the conditions under which a set of sets in fact has a Śivasūtra-style linear
representation.

The rest of the paper is organized as follows: In Section 2 a general formal-
ization of Pān. ini’s Śivasūtra-style representation of phonological classes is given.
Furthermore, the main questions which will be answered in the course of the paper
are raised. Section 3 explains how the Hasse-diagrams of sets of subsets determine
whether a Śivasūtra-style representation of natural classes exists. Since some results
of graph theory are needed, a brief introduction to planar graphs is given. Finally,
in Section 4 a procedure is presented that constructs a good Śivasūtra-style repre-
sentation of a set of natural classes if it exists. This section ends with the proof that
Pān. ini has chosen an optimal Śivasūtra-style representation. Furthermore, exam-
ples of feature-based analyses are stated and translated into Śivasūtra-style rep-
resentations. The whole approach is based only on a set- and order-theoretical
investigation of the set of natural classes used in Pān. ini’s grammar of Sanskrit. No
external – phonological or methodological – arguments are involved.

2. General Definitions and the Main Questions

DEFINITION 2.1. A well-formed Śivasūtra-alphabet (short S-alphabet) is a triple
(A, �, <) consisting of a finite object alphabet A, a finite set of markers � (such
that A ∩ � = ∅), and a total order < on A ∪ �.

DEFINITION 2.2. A subset T of the alphabet A is S-encodable in an S-alphabet
(A, �, <) iff there exists a ∈A and M ∈ �, such that T = {b ∈ A : a ≤ b < M}.
aM is called the pratyāhāra or S-encoding of T in (A, �, <).

The set of S-encodable sets in an S-alphabet (A, �, <) meets the two condi-
tions of natural classes stipulated by Kornai: First, if T1, T2 ⊆ A are S-encodable
in (A, �, <), with pratyāhāras a1 M1 and a2 M2, then T1 ∩ T2 is S-encodable in
(A, �, <), too, and the pratyāhāra of T1 ∩ T2 is max(a1, a2) min(M1,M2). Second,
the set of S-encodable classes is small compared to the set of unnatural classes,
since for an alphabet A consisting of n elements the number of pratyāhāras is at
most

(n
2

)
, while the number of all possible classes is 2n −n. Hence, the pratyāhāras

form a suitable device for defining natural classes.

DEFINITION 2.3. An S-alphabet (A′, �, <) corresponds to a system of sets
(A, �) (where � is a set of subsets of A) iff A=A′ and each element of � is
S-encodable in (A′, �, <). An S-alphabet which corresponds to (A, �) is called an
S-alphabet of (A, �). A system of sets for which a corresponding S-alphabet exists
is said to be S-encodable.
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For example, take the set of subsets

� = {{d, e}, {b, c, d, f, g, h, i}, {a, b}, { f, i}, {c, d, e, f, g, h, i}, {g, h}} (1)

of the alphabet A = {a, b, c, d, e, f, g, h, i}: it is S-encodable and

a bM1c g hM2 f iM3 d M4 e M5 (2)

is one of the corresponding S-alphabets. The pratyāhāras of � are: dM5, bM4, aM1,
fM3, cM5 and gM2.

DEFINITION 2.4. An S-alphabet (A, �, <) of (A, �) is said to be good iff there
exists no other S-alphabet (A, �′, <′) of (A, �) such that the set of markers �′ has
fewer elements than �.

Looking at Pān. ini’s Śivasūtras it is striking that the phonological segment h
occurs twice, namely in sūtra 5 and sūtra 14. To model this phenomenon we will
introduce the concept of enlarging an alphabet by duplicating some of its elements.5

Â is said to be an enlarged alphabet of A if there exists a surjective map
ϑ : Â→A. We can extend the map ϑ naturally to sets ϑ : P(Â ) → P(A) with
ϑ(ϕ̂) = {ϑ(a) : a ∈ ϕ̂}. It is clear that for every system of sets (A, �) we can find
an enlarged alphabet Â and a set of subsets �̂ of Â with � = {ϑ(ϕ̂) : ϕ̂ ∈ �̂} such
that (Â, �̂) is S-encodable.6 To achieve such an S-encodable system of sets (Â, �̂)
we enlarge A and choose �̂ so that the elements of �̂ are disjoint. Then we arrange
the sets of �̂ in a sequence and separate them by markers. The induced S-alphabet
(Â, �̂<̂) obviously corresponds to (Â, �̂). The following example illustrates this
procedure: Let

� = {{a, b}, {a, c}, {b, c}} and A= {a, b, c} (3)

be the system of sets for which an enlarged S-alphabet is searched. (A, �) is
not S-encodable because the elements of A cannot be linearly ordered in such a
way that the elements of each member of � form an interval. We can enlarge A
by duplicating each of its elements (Â= {a, a′, b, b′, c, c′}) and then we can take
�̂ = {{a, b}, {a′, c}, {b′, c′}}. Now

a b M1a′ c M2 b′ c′ M3 (4)

is an S-alphabet of (Â, �̂) and therefore an enlarged S-alphabet of (A, �).7

Because we always find a finite, enlarged S-alphabet of (A, �), a minimally
enlarged S-alphabet exists.

DEFINITION 2.5. An enlarged S-alphabet (Â, �̂, <̂) of (A, �) is said to be
optimal iff it fulfills the following conditions: First, there exists no other enlarged
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S-alphabet (Ã, �̃, <̃) of (A, �), the alphabet Ã of which has fewer elements than
Â and second, no other enlarged S-alphabet of (A, �) has the same number of
object elements, but fewer markers than (Â, �̂, <̂).

Hence, an optimal S-alphabet has a minimal number of duplicated elements
and as few markers as possible. However, optimal S-alphabets do not necessarily
minimize the overall length of the S-alphabet, as the following example illustrates:
The system of sets

� = {{a, b}, {a, b, c}, {a, b, c, d}, {a, e}, {a, e, f }, {a, e, f, g}} (5)

is S-encodable, and a good corresponding S-alphabet is

g f eaM1bM2cM3d M4 (6)

Since no element in (6) is duplicated, (6) even forms an optimal S-alphabet. How-
ever, the overall length of (6) is not minimal, as the enlarged S-alphabet (7) shows:

g f eaM1dcba′M2 (7)

However, due to the duplication of a, (7) is not an optimal enlarged S-alphabet of
(5).

After this introduction of basic concepts the following questions will be inves-
tigated in the present paper:

1. Do Pān. ini’s Śivasûtras form an optimal S-alphabet?
Here we have to answer the questions:
(a) Is the duplication of a phonological segment necessary?
(b) If a duplicated element is necessary, does the duplication of the “h” lead to

an S-alphabet with as few markers as possible?
2. Is there a general method to decide whether a set of sets is S-encodable?
3. If a system of sets is S-encodable, is there a systematical method to construct a

good corresponding S-alphabet?

Kiparsky (1991) discusses question 1 and shows that its affirmation follows from
the principle of economy and the logic of the special case and the general case used
in the construction of Pān. ini’s whole grammar.8 I will answer all three questions,
using a different approach. Furthermore, I will give some hints about how to find
an enlargement of a set of sets leading to an optimal S-alphabet.
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3. The Existence of Śivasūtra-Style Representations of Systems of Sets

3.1. A BRIEF INTRODUCTION TO THE THEORY OF PLANAR GRAPHS

Throughout this paper we will need some basic knowledge about planar graphs,
which will be briefly introduced in this section.9 A graph G is a pair (V, E) consisting
of a set of vertices V and a set of edges E ⊆ V × V . Directed graphs are graphs the
edges of which are directed.

A graph is a plane graph if its vertices are points in the Euclidean plane R × R
and its edges are polygonal arcs in R × R, such that neither a vertex nor a point of an
edge lies in the inner part of another edge. The Euclidean plane R × R is subdivided
by a plane graph into faces (areas). Exactly one of these faces, the infinite face, is
of unlimited size. Each edge of a plane graph lies at the boundary of at least one
face, but not more than two faces.

If a graph is isomorphic to a plane graph, it is said to be planar. One of the most
important criteria for the planarity of graphs is the criterion of Kuratowski, which
is based on the notion of minors of a graph. A graph M is said to be a minor of a
graph G if it can be constructed from G by first removing a number of vertices and
edges from G and then contracting some of the remaining edges.

PROPOSITION 3.1. (Criterion of Kuratowski). A graph G is planar iff G contains
neither K5 nor K3,3 as a minor (see Figure 1).

3.2. PLANE HASSE-DIAGRAMS AND S-ENCODABILITY

Let (A, �) be a system of sets as above, and let H(�) be the set of all intersections
of elements of � ∪ {A}.H(�) is partially ordered by the superset relation. A Hasse-
diagram of a partially ordered set is a drawing of the directed graph whose vertices
are the elements of the set and whose edges correspond to the upper neighbor
relation determined by the partial order. The drawing must meet the following
condition: if an element x of the partially ordered set is an upper neighbor of an
element y, y ≺ x , then the vertex of x lies above the vertex of y. In this paper we
will stipulate that all edges are directed upwards.

Figure 1. The complete graph with 5 vertices, K 5, and the complete bipartite graph with 2 · 3
vertices, K3,3.
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Figure 2. Hasse diagram of (H(�), ⊇), � = {{d, e}, {b, c, d, f, g, h, i}, {a, b}, { f, i}, {c, d,

e, f, g, h, i}, {g, h}}.

Figure 2 shows a drawing of the Hasse-diagram (H(�), ⊇) of our example
system of sets (A,�) from (1). All Hasse-diagrams in this paper are labeled eco-
nomically as follows: for every b ∈ A the smallest set of H(�) containing b (its
b-set) is labeled. The set corresponding to a vertex of the diagram can be recon-
structed by collecting all elements that are labeled to the vertex itself or to a vertex
above. For example, in Figure 2 the vertex labeled with c corresponds to the set {c,
d, f, g, h, i}.

The Hasse-diagram of (H(�), ⊇) gives a first hint for the question whether
(A, �) is S-encodable:

PROPOSITION 3.2. If (A, �) is S-encodable, then the Hasse-diagram of
(H(�), ⊇) is a planar graph.

Proof. The proof is based on the construction of a plane stairs graph of
(H(�), ⊆).10 Rotating the stairs graph of (H(�), ⊆) by 180◦ results in a plane
Hasse-diagram of (H(�), ⊇).11

Let (A, �, <) be an S-alphabet of (A, �). For each element φ of H(�) the
coordinates in R2 of the corresponding vertex of the stairs graph are given as
follows: The smallest element of φ w.r.t. (A, �, <) determines the x-coordinate of
the vertex12 and its y-coordinate is given by the length of the longest descending
chain between φ and the empty set in (H(�), ⊆).13

The edges of the stairs graph are stair-shaped polygonal arcs: Let φ and ψ be
two elements of (H(�), ⊆) with φ ≺ ψ . Since φ ≺ ψ implies φ ⊂ ψ it follows for
the x-coordinates that φx ≥ ψx . If φx = ψx , then the edge between φ and ψ in the
stairs graph is a straight line; otherwise the vertices φ and ψ are connected by the
polygonal arc (see Figure 3)

(ψx , ψy),

(
ψx , ψy − 1

2

)
,

(
φx − 1

2
, ψy − 1

2

)
,

(
φx − 1

2
, φy

)
, (φx , φy).
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Figure 3. Edge of a stairs graph.

Figure 4. Stairs graph of (H(�), ⊆) with �={{d, e}, {b, c, d, f, g, h, i}, {a, b} {f, i}, {c, d, e,
f, g, h, i}, {g, h}} constructed w.r.t. abM1cghM2fiM3d M4eM5.

The only exception to this edge-construction rule is that every edge between a set
φ and the empty set is just a straight line. The construction of the edges guarantees
that no vertex of the stairs graph lies in the inner part of an edge.

With a simple but detailed case distinction it can be proved that every conflict
that occurs between two edges (i.e. every intersection of two edges) can be solved
by slightly transforming one of the edges in such a way that the distance between
the transformed and the original edge does not exceed 1/4.14

Figure 4 shows the stairs graph of (H(�), ⊆) with � taken from example (1);
the stairs graph is constructed w.r.t. the S-alphabet given in (2).

As a corollary of Proposition 3.2 it follows that a system of sets is not S-encodable
whenever the Hasse-diagram of the corresponding set of intersections is not planar.

Together with Kuratowski’s Criterion 3.1 this answers question la, since
Figure 5 shows a section of the Hasse-diagram of the natural classes of Sanskrit
and their intersections, which has K 5 as a minor.15 Hence, Pān. ini was forced
to duplicate at least one of the phonological segments. But it remains to prove
that h is the best candidate for the duplication; this discussion will be postponed.
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Figure 5. A section of the Hasse-diagram of the pratyāhāras used in the A.s.tādhyāyı̄ which
has K 5 as a minor. The figure shows that the class memberships of the phonological segments
h,v and l (denoted by l2) are independent of each other.

Figure 6. This sequence of graphs shows that the emphasized graph of Figure 5 has K 5 as a
minor. The small circles indicate the edges which will be contracted in the next step.
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Figure 7. Hasse-diagram of the intersections of the sets |{d, e}, {a, b}, {b, c, d}, {b, c, d,

f }, {a, b, c, d, e, f }|. It is plane, but there exists no corresponding S-alphabet.

PROPOSITION 3.3. Pān. ini’s pratyāhāras are not S-encodable.

3.3. BOUNDARY GRAPHS AND S-ENCODABILITY

The condition for S-encodable systems of sets given in Proposition 3.2 is necessary
but not sufficient, however. Figure 7 shows an example of a system of sets that is not
S-encodable, although the Hasse-diagram of its intersection sets is planar. We need
a stronger condition to fully identify those systems of sets which are S-encodable
and to answer question 2.

THEOREM 3.4. Let (A, �) be a system of sets and �̄ = � ∪ {{a} : a ∈ A}. The
following statements are equivalent:

1. (A, �) is S-encodable.
2. The Hasse-diagram of (H(�̄), ⊇) is planar.
3. If G is a plane Hasse-diagram of (H(�̄)\∅, ⊇), then for every b ∈ A the smallest

set ofH(�) containing b (its b-set) is a vertex of the boundary �(G) of the infinite
face of G. �(G) is called the boundary graph of (H(�), ⊇).

Proof. By adding a new singleton {a}, a ∈ A, to �, the S-encodability
is preserved (at most one new marker immediately following a has to be in-
serted in an S-alphabet of (A, �)). Hence, (A, �) is S-encodable iff (A, �̄) is
S-encodable. Together with Proposition 3.2, this proves that statement (1) implies
statement (2).

Now we prove the equivalence of the statements (2) and (3). Adding a new
set {a} to H(�) does not alter the Hasse-diagram much: a new vertex is created for
{a} and two new edges, one between {a} and the a-set and the other between
{a} and the empty set. In a plane drawing of the Hasse-diagram of (H(�̄), ⊇),
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Figure 8. Hasse-diagram of (H(�̄), ⊇) with �̄ = {{d, e}, {a, b}, {b, c, d}, {b, c, d, f }, {a, b, c,
d, e, f }, {a}, {b}, {c}, {d}, {e}, { f }} which has K3,3 as a minor.

each singleton {a} forms a vertex of the boundary graph; and if {a} /∈ H(�),
then {a} has exactly one lower neighbor in (H(�̄), ⊇), namely the a-set of H(�).
Consequently, each a-set is an element of the corresponding boundary graph of
(H(�), ⊇) if (H(�̄), ⊇) is planar. And vice versa, if each a-set is an element of
a boundary graph of (H(�̄), ⊇), then we can add the extra vertices and edges
of (H(�̄), ⊇) without destroying the planarity.

It remains to prove that statement (2) implies statement (1). We first introduce the
notion of a run through a boundary graph. Let (A, �) be a system of sets such that
the Hasse-diagram of (H(�̄), ⊇) is planar. Furthermore, let G be a plane drawing of
(H(�̄)\∅, ⊇) with boundary graph �(G). A run R through �(G) is a path that starts
and ends at the vertex A and meets the following conditions: First, for every a ∈ A
the path passes the a-set at least once; second, none of the edges occurring more
than once in the path is part of a circle in �(G). Each run in �(G) induces a total
order <R on A: a <R b iff the run has passed the a-set at least once before it passes
the b-set for the first time. The fact that G is a plane drawing of the Hasse-diagram
of (H(�̄)\∅, ⊇) guarantees that each element of �̄ can be represented as an interval
of (A,<R). Hence, (A,<R) can be extended to an S-alphabet of (A, �̄) by putting
a marker behind every element of A. This concludes the proof of Theorem 3.4.

Looking back at the example given in Figure 7, it is clear that by moving from
� to �̄ the Hasse-diagram loses the quality of being planar; the left side of Figure
8 shows the Hasse-diagram of (H(�̄), ⊇), which has the bipartite graph K3,3 as a
minor (drawing on the right side). Hence, (A, �) cannot be S-encodable.

4. The Construction of Śivasūtra-Style Representations of Systems of Sets

4.1. THE BOUNDARY GRAPH DETERMINES GOOD S-ALPHABETS

In the proof of Theorem 3.4 we presented a general method for the construction
of an S-alphabet for every S-encodable system of sets (A, �). We started from a
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run through a boundary graph of the Hasse-diagram of (H(�̄), ⊇). As the resulting
S-alphabets have as many markers as there are elements in A, they generally are not
good S-alphabets. The aim of this section is to develop a method for the construction
of good S-alphabets.

Given an S-encodable system of sets (A, �), the construction of the stairs graph
in the proof of Proposition 3.2 presents a method for constructing a plane Hasse-
diagram of (H(�), ⊇) for any S-alphabet of (A, �̄) such that a run through its
boundary graph exists which induces exactly the same S-alphabet. It follows that
any total order of A given by an S-alphabet of (A, �) can be induced by a run
through a boundary graph of (H(�̄), ⊇), too. If (A, �) is an S-encodable system
of sets, the boundary graph of (H(�), ⊇) is fixed up to isomorphism. This can be
proved by induction over the length of the longest ascending chain in (H(�), ⊇)
between a vertex and the vertex corresponding to the empty set.

To construct a good S-alphabet, we have to consider runs through the boundary
graph of (H(�), ⊇), instead of (H(�̄), ⊇). By looking at the boundary graph as a
subgraph of the directed Hasse-diagram, the edges of a run can be directed.

An S-alphabet, seen as a sequence of markers and elements of A, can be con-
structed from the empty sequence by traversing a run through the boundary graph
of (H(�), ⊇) from the beginning to the end: If a vertex is reached which is labeled
with an a-set, then one adds a to the sequence, together with all other labels of the
same vertex. If an edge is passed whose direction contradicts the traversal direc-
tion, a new, previously unused, marker element is added to the sequence, unless the
last added element is already a marker. Finally, after the end of the running path
is reached, the sequence is revised as follows: If an element of A appears more
than once in the sequence, delete all but the first occurrence. The definition of the
boundary graph guarantees that, if a run passes an element a ∈ A more than once,
the run goes upwards immediately after it reaches the a-set for the first time. Hence,
eliminating all but the first occurrence of a reduces the number of markers in the
resulting S-alphabet.

Applied to our small example (1) and the plane graph of its Hasse-diagram
given in Figure 2, we may choose the run through the boundary graph illustrated in
Figure 9. Traversing the running path, we pass first the a-set and the b-set without
using an edge against its destined direction. Now we move downwards and violate
the direction of the edge, and therefore we have to add a marker to our sequence,
so that it starts with a b M1. Now moving upwards we collect the c and the g, but
since the g- and the h-sets are identical we also have to collect the h. After this we
move downwards again, and that is why we add a new marker. We again reach the
c-set and add c a second time to our sequence. So far our sequence is a b M1 c g h
M2 c, and if we continue we end up with the S-alphabet depicted in (2).

Note that this procedure does not yield a unique S-alphabet because we have
several decisions to make: (a) If a vertex is labeled with more than one element, their
order in the S-alphabet is arbitrary; (b) from the vertex labeled c we can either go to
the vertex labeled gh or if; (c) the path can be traversed clockwise or anti-clockwise.
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Figure 9. Hasse-diagram of example (1) with a possible path in its S-graph from which the
S-alphabet abM1cghM2fiM3dM4eM5 can be achieved.

Whenever a run violates the direction of an edge immediately after passing
an a-set, a new marker has to be added to the S-alphabet. Hence, every good S-
alphabet of (A, �) can be constructed by finding a run through the boundary graph
which minimizes the number of such marker-insertion situations. This answers
question 3.

PROPOSITION 4.1. If (A, �) is S-encodable, then all good S-alphabets
(A, �, <) of (A, �) can be constructed systematically from the boundary graph of
a plane Hasse-diagram of (H(�), ⊇).

4.2. PĀN. INI’S ŚIVASŪTRAS ARE OPTIMAL

Figure 10 shows the Hasse-diagram, with duplicated h, corresponding to the
pratyāhāras which Pān. ini uses in his A.s.tādhyāyı̄ ; the duplication of h is denoted
by h .16 The 42 pratyāhāras actually used by Pān. ini in the A.s.tādhyāyı̄ are marked
in the figure with white boxes. The black and the striped rectangles next to some
of the vertices mark the places where markers have to be added depending on
the traversal direction (black: anti-clockwise [14 markers], striped: clockwise [17
markers]). It is obvious that no S-encoding can have less than 14 markers and the
good S-alphabets are the various combinatorial variants of

〈a, i, u,M1, .r, .l, M2, {〈{e, o}, M3〉, 〈{ai, au}M4〉, h, y, v, r,M5, l, M6, ñ, m,

{n̄, .n, n, }M7, jh, bh,M8, {gh, .dh, dh}, M9, j, {b, g, .d, d}, M10,

{kh, ph}, {ch, .th, th}, {c, .t, t}, M11, {k, p}, M12, {́s, .s, s}, M13, h, M14〉.

Kiparsky (1991) argues in detail that the order chosen by Pān. ini out of the set
of possibilities is unique if one requires a subsidiary principle of restrictiveness.

So far we have answered question 1a and questions 2 and 3 in the affirmative.
Hence, we have argued that Pān. ini was forced to enlarge the alphabet, but it remains
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yā
hā
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sū

tr
as

.



PROOF

486 W. PETERSEN

to show why duplicating the h is the best choice. If h is entirely removed from the
natural classes, then a good S-alphabet has only one marker less, namely 13.

In the natural classes, the occurrences of h,v and l are independent of each other;
since there exists a natural class – or an intersection of natural classes – for each
subset of {h,l,v} which contains the elements of the subset but no element of its
complement in {h,l,v}. Therefore, the class memberships of the segments h,l and
v are independent of each other. A Hasse-diagram that contains three independent
elements has K5 as a minor and is therefore not planar (see Figures 5 and 6).
Triples of three independent elements are called K5-triples. Hence, to get a planar
Hasse-diagram it is necessary to duplicate at least one element of each K5-triple.

Looking at the pratyāhāras used in the A.s.tādhyāyı̄ we find 249 K5-triples; each
of them contains h, and no other element is contained in each of them. Hence,
to avoid the duplication of h it would be necessary to duplicate more than one
element. For this reason there is no other choice than duplicating h to get an optimal
S-alphabet corresponding to Pān. ini’s pratyāhāras.

PROPOSITION 4.2. Pā.nini’s Śivasūtras form an optimal S-alphabet.

Summarizing, all three questions at issue must be affirmed. Pān. ini’s method
of representing hierarchical information in a linear form is an interesting field of
further investigations. Especially the fact that this method enables us to define
phonological classes without referring to phonological features is remarkable.

Kornai (1993) points out that Pān. ini’s approach is generalized by feature geom-
etry, and that it is genuinely weaker than the latter. Although Kornai argues that
the power of feature geometry is needed to get the proper set of natural classes of
a phonological system, for some special tasks such as describing the set of major
class features a Śivasūtra-style analysis can be appropriate.

However, after my investigation of several analyses of the phonological systems
of different languages, Pān. ini’s phonological theory of Sanskrit seems to have a
special, rare property: The 249 K5-triples of phonological elements created by the
pratyāhāras used in the A.s.tādhyāyı̄ turn out to be a typical number of such triples,
but the fact that each of these triples contains the element h is extraordinary. Table III
shows an analysis of the natural classes of the consonants of German taken from
Wurzel (1981). The 12 simple natural classes and their intersections yield 290 K5-
triples. But in any case, one needs to duplicate more than 8 of the 23 phonological
elements to get a corresponding S-alphabet. A classification of vowels taken from
Hall (2000) is given in Table IV. Here, although the number of K5-triples is only 126
one needs to duplicate 7 elements in order to eliminate all K5-triples. A resulting
S-alphabet is, e.g., εi IyYu 	mM1o caM2æM3

c 	

Y œoφuyM4ieM5. Up to now, the
author only found the simple analysis of German vowels given in Table V, which suc-
ceeds with a single duplication in an optimal S-alphabet (uüoöM1eM2iüM3aM4).

Finally, it should be emphasized again: the approach presented is general and
not limited to the domain of phonology.
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Table IV. Classification of vowels, taken from Hall (2000). An optimal corresponding
enlarged S-alphabet is The
pratyāhāra of the class of back vowels is uM2, the high vowels are denoted by iM1
the low vowels by aM3, the tense vowels by oM5, and the round vowels by M4.

i I y Y e ε φ œ æ u 	 m o c a

[Back] × × × × × ×
[High] × × × × × × ×
[Low] × ×
[Tense] × × × × × ×
[Round] × × × × × × × ×

Table V. Example classification of vowels. An optimal corresponding enlarged
S-alphabet is uüoöM1eM2iüM3aM4.

a i u ü e o ö

[Front] × × × ×
[Round] × × × ×
[Mid] × × ×
[Low] ×

Notes

1. This approach fits naturally in the framework of Formal Concept Analysis (see Ganter & Wille
1999), because the investigated graphs are formal concept lattices.

2. The Śivasūtras allow a total of 305 pairs to be constructed consisting of a phonological segment
followed by an anubandha. Due to the double occurrence of ‘h’, 10 of the pairs denote the same set
of phonological segments (e.g. ‘aL’ and ‘aR’). If we exclude classes containing a single element,
then the number of phonological classes which can be expressed by Pān. ini’s Śivasūtras reduces
to 305 − 10 − 14 = 281.

3. Since Pān. ini’s grammar was designed for oral tradition, the linear form of the Śivasūtras was a
prerequisite.

4. The following consideration shows that one does not need to enumerate all elements of an interval
to decide whether a special element belongs to this interval. If a trained person is looking for
the word ‘enzyme’ and opens a lexicon by chance at the letter ‘M’, then it is clear that the entry
sought is contained in the preceding part of the book.

5. Duplicating an element a means adding a new element a′ to A and changing some of the occur-
rences of a in � to a′.

6. An S-alphabet of (Â, �̂) will sometimes be called an enlarged S-alphabet of (A, �).
7. This example only illustrates a general method of constructing an enlarged S-alphabet. It is clear

that there are better enlargements, leading to more compact S-alphabets (e.g. abM1cM2a′M3).
8. Another discussion of question 1 can be found in Staal (1962).
9. The full details can be found in every introductory book on graph theory. In writing this paper

Diestel (1997) proved to be especially helpful.
10. Figure 4 shows an example of a stairs graph.
11. The concentration on the ordered set (H(�), ⊇) stems from the fact that the approach presented

in this paper was originally developed in the framework of Formal Concept Analysis.
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12. If the smallest element of φ is the n-th smallest element of A in (A, �, <), then the x-coordinate
is n. The x-coordinate of the empty set is 0.

13. Throughout the whole paper, we consider only the case that ∅ ∈ H(�) . It can be easily shown
that all propositions remain true in the simpler case ∅ /∈ H(�).

14. Due to the limited space, proofs are not given in full detail here, but the results are illustrated by
a number of examples.

15. The emphasized lines in the figure mark a way to arrive at the minor K 5: remove all edges which
are not emphasized and contract those edges which are marked by arrows. The sequence of graphs
in Figure 6 shows the result of each step of contraction.

16. The drawing was done by the tool “Concept Explorer” written by Sergey Yevtushenko
(http://www.sourceforge.net/projects/conexp).
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