Induction of Classifications from Linguistic Data

Rainer Osswald and Wiebke Petersen

Abstract. We present a flexible approach for extracting hierarchicalchoice systemits members are assumed to be pairwise incompat-

classifications from linguistic data. To this end, the framework of ob-ible. Choice systems hawentry conditionswhich are determined

servational logic is introduced, which extends the logic that underliedy the network structure: brace and bar correspond respectively to

standard Formal Concept Analysis by allowing disjunctive rules anctonjunction and disjunction. Entry condition and choice disjunction

exclusions. We give a rigorous mathematical characterization of hovare assumed to imply each other. Sbird A singularis equiva-

the chosen rule type affects the structure of the induced hierarchyent to feminine\/ masculinev neuter and every two members of

The framework is applied to the induction of hierarchical classifica-{feminine, masculine neuter} are incompatible.

tions from linguistic databases. The pros and cons of several types Both types of classifications can be regardethasriesconsisting

of hierarchies are discussed in detail with respect to criteria such asf (universally quantified) conditionals whose premises and conclu-

compactness of representation, suitability for inference tasks, and irsions are built by finite conjunction and disjunction from primitive

telligibility for the human user. predicates or concepts (see Section 2.1). Given such a classification,
itis natural to ask for theonjunctive conceptsr entity typeghat are
compatible with the classification. Roughly speaking, a conjunctive

1 THE LOGIC OF LINGUISTIC concept is a set of primitive concepts that@sistently closedith
CLASSIFICATION respect to the classificational theory in question (see Section 2.3 for
details)®
A simple method for classifying (linguistic) data is providedthy- The rest of the paper is organized as follows: In Section 2, obser-

onomic treeswhich are ubiquitous in linguistic textbooks. For ex- vational theories are introduced, which subsume simple inheritance
ample, nominal words are traditionally subdivided into pronouns,networks as well as Horn theories. In addition, it is shown how the
nouns, adjectives, etc; pronouns are further subdivided into intereanonical universe of such a theory depends on the class the theory
rogative pronouns, personal pronouns, etc, etc. From a logical poilfelongs to. This result is used in Section 3 for inducing different
of view each concept of a taxonomic treepliesits superordinate types of conceptual hierarchies from a formal context. In the case
concept; e.gpronounimplies nominal word Furthermore, any two  of A-free Horn theories, the induced hierarchies essentially coincide
subconcepts of the same conceptiammpatible as e.gnounand  with the concept lattices of Formal Concept Analysis. In Section 4,
adjective In addition, classification by taxonomic trees is often as-we apply the framework to the induction of classifications from lin-
sumed to beexhaustiven the sense that every concept implies the guistic data. We discuss the effects of varying the underlying the-
disjunction of its immediate subconcepts. ory class. Moreover, we consider the selective addition of disjunctive
Systemic networksvhich have their roots in systemic grammar rules. One possible application is the construction of classification
(e.g. [10]), provide a more sophisticated formalism for presentingrees.
linguistic classification. Figure 1 shows a small fragment of such

a network. The classifiers aligned to the right of a bar constitute 82 CLASSIFICATION AS OBSERVATIONAL

THEORY
first 2.1 Observational theories
person
second Linguistic classifications of the sort presented in Section 1 can be re-
personai— third
— masculine

sinqular- ditionals of the formvz(¢x — ), henceforth written ag C ).
pronou 4{ ouiar neuter The one-place predicat d inductively built byn andv
number| plural p p eSan_ 1_/J_are inductively built byA anc
from members of a sét of primitive predicates plus two predicates

V and A, which stand respectively forz(z = ) andAz(z # z).*
Following [20] we call predicates constructed that walyserva-
tional.

Let T[X] be the(free) term algebraof observational predicates
over Y. Observational statementwer X are statements of the form
¢ C 1, with ¢,¢ € T[3]; observational theorieare sets of such

feminine . . L . .
}gender garded as first-order theories consisting of universally quantified con-

demonstrative—

Figure 1. Part of a systemic classification of English pronouns (after [21])

3 See [2] for an early approach of this kind, which emplsiyaple inheritance
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statements. In the following, ‘classification’ and ‘observational the- For each interpretatiod/ of X with universeU let eys be the
ory’ are used interchangeably. Notice that the lack of an explicitfunction fromU to p(X) such that
negation operator does not restrict the logical expressivity of obser-
vational statements. The reason is that an arbitrary universally quan- em(z) = {peX|zEnmp}. 2)
tified monadic predicate built by conjunction, disjunction, negation, —_ N .
and conditiona?from primitive grediéates has a ::onjunctive ?lormaIBy definition of specializations L y iff en(x) S em(y). SO
form and is thus equivalent to a conjunction of observational stateS™ 'S an prder embeddlng af into o(2) if M satls_,fles identity of
ments® For instanceg C —d is equivalent top A s C A and indiscernibles. Moreover, it follows by term induction that
¢ AN C xisequivalenttap C o V x. .

A Horn statemenbver ¥ is an observational statemepitC 1, chu¢ it eu(@)F o ®)
where¢ andy are free of disjunctions. In cageandy’ belong toX, Consequently, ifM is a model of an observational theaFythen
we speak of simple inheritance statemer§tatements of the form ¢, is a homomorphism of models frod/ to M(I"). The canoni-
¢ C A are referred to asxclusion statementé Horn theoryis an  cal model is thus the “larges”-model satisfying identity of indis-
observational theory consisting solely of Horn statements. Similarlycernibles in the sense that every other such madés embedded in
we speak osimple inheritance theorigstc. M(T) viaeps.

Depending on the class of, the canonical univers€(T") can be

. characterized as a subset system as follbws:
2.2 Interpretations and models y

Interpretations and models of observational theories are defined ad'€orem 1 If an observational theory™ over: belongs to one of
usual in standard (first-order) predicate logic: a (set-valirgdjpre- the classes listed on the left of Table 1 then its canonical universe
tationof . consists of ainiversel/ and arinterpretation functiomz ~ C(I') is closed with respect to the properties listed in the same row

from ¥ to p(U). The interpretation/ can be inductively extended ©N the right. Conversely, if a subset systarover 3 has closure
to T[Z] by M(V) = U, M(A) = @, properties that are listed in the right column théhis the canoni-

cal universe of an observational theory owerof the corresponding
class on the left.

M(¢pAip) =M(p) N M(p), M(pV )= M(p)UM).

An interpretation)/ modelsa statemeny C v iff M(¢) C M ().

A modelof an observational theotly overY is an interpretation that ~_ Class ofl’ ‘
models each of the statementdbfAn interpretation corresponds to

Closure properties of (T")

X : - s observational local membership
a satisfaction relatior=,; from U to X, which can be extended to - - - -
one fromU to T[X] such that: E ¢ iff 2 € M(¢). The setM (¢) is Horn nonempty intersectiont- directed union
called theextentof ¢. A-free Horn intersection+ directed union

Consider an interpretation af with universeU and satisfaction

relationk. Given two members andy of U we say that: is spe- simple inheritance || intersection+ union

cialized byy (notation:z C y) if y satisfies every member &f that exclusion subsets+ finitely bounded union
is satisfied byz. It follows by term induction that simple inheritance || nonempty intersection
+ exclusion + finitely bounded union
cCy iff  VoeTE(zF¢—yFg). @

If the specialization preorder is antisymmetric and thus a partial
ordering, we say that the interpretation satisfidsntity of indis- Table 1. Relationship betweel andC(I')
cernibles (For the sake of the conventions of Formal Concept Anal-
ysis, more special elements will be graphically depidbetbwless
special ones.)
The reader is referred to [13] for a proof, where in addition an
. . order-theoretic characterization can be found. (For instance, the sub-
2.3 The canonical universe set systems that are closed with respect to nonempty intersection and
S/ected union, also known asductive intersection systemsorre-
pond to thebounded-complete algebraic dcpas Scott domains

for short.)

Given clasg of observational statements over(e.g. the class of
Horn statements) and a subset systéovery:, let'c (/) be the set
of all C-statement® C ¢ such that

There is a standard way to associate with each observational theo
I" overX acanonical modeM(T") of I'. Its universeC(T") consists of
theT'-closed, consistent subsetsy:, which are specified as follows:
for eachX C ¥ andp € ¥ defineX F piff p € X; extendF
inductively toT[X], i.e. X E V always,X E A never,.X E ¢ A iff

X EgpandX F ¢, andX F ¢ Vo iff X E ¢ or X E 1. Now, let
C(T") be the set of allX such that for every statemeipitC ¢ of T,

if (X)I: ¢ thenX k 1.° Specialization orC(I') is set inclusion and VX EUXFS—XEY).

hence a partial order, which is easily seen to be directed complete. 7 p supset systenr overs is locally closedif it contains every subseX of
> which islocally a member off in the sense that for every finite subgét

5 Essentially the same observation is made in [5]. of X there is a member” of I/ such thatX N F = Y N F'. Directed union

6 Alternatively, one can take the setBfmodels with values i2 = {0, 1}, is shortunion of (upwards) directed subsgtmnd finitely bounded union
where2-valued interpretations and models are defined as in standard propo- meansunion of subsets whose every finite subset has an upper bNord
sitional logic: a2-valued interpretation of X is a model ofl" iff v(p) < tice that everyfinite subset system is locally closed and closed with respect

v(zp) for every statemenp C v of T to directed union.



We callT'¢ (i) thecanonicalC-theoryassociated with(. The theory Example:LetX be{a, b, ¢, d, e}. Supposé/ consists of the seven

I'c(U) is of course highly redundant since it is closed with respectelementsey, x2, . . ., 7 which are classified according to the table
to entailment. (See [5] for the definition ofrenredundant basisf of Figure 2. In addition, the figure shows the specialization order on
atheory.)

Let us say that/ is C-definableif ¢/ is the canonical universe of
aC-theory (which is the case, for instance(ifs the class of Horn || a | b | c | d | e |
statements and is an inductive intersection system). Itis easy to see 1 Tx 1 x X
that!/ is C-definable just in casé/ = C(T'¢c(U)). In generall'c (U) 7 %
is theleastC-definable subset system containitig Consequently, P, X
by Theorem 1: za TX X X %
Theorem 2 The canonical universe dfc(U) is the closure ot/ L5 || X X
with respect to the properties of Table 1 that correspond to afass T6 i X i i

x7

3 FORMAL CONCEPT ANALYSIS
3.1 Complete theories of formal contexts

Consider the situation that a certain 8etf objects is classified with
respect to a set of properties (or attributes). In other words, we
are given a satisfaction relatiétnfrom U to X, i.e. an interpretation
function M from X to p(U). In the terminology ofFormal Concept
Analysis([7]), the triple (U, ¥, E) is called aformal contexf

Given a formal context one can ask for a theory that explains the
data. To make this precise, we need to fix the type of theory we are
interested in. For example, one can ask for a simple inheritance the-
ory with or without exclusions, a Horn theory with or withatut or
an observational theory in general.

Let C be a class of observational statements aveYVe call aC- Figure 2. Classification table and induced specialization order
theoryI" a completeC-theory of M if, first, every statement df' is
true with respect taV/, i.e. if M is a model ofl", and, second, if
I" entails everyC-statement that holds ifZ, that is, if for all (¢ C
Y) €C,

U/~ induced by the given formal context (wherg andzs are in-
if M(¢) C M(yp) then T'H ¢ C. discernible, i.ex4 ~ x¢), as well as the corresponding subset system
U overX. Figure 3 provides an overview of the canonical universes

It is an immediate consequence of definitions that a comtlete of several complet€-theories ofA, with varyingC. At the top of
theory of M is unique up to logical equivalence. Moreover, there the figure there is the canonical universe of a complete simple inheri-

is a trivial way to get a complete theory: take the Betys of all  tance theory of\/; it is the closure of(,; with respect to intersection
C-statements that are true with respecfifo and union. A (nonredundant) complete simple inheritance theory of
M is given by the statementsC ¢, ¢ C a, e C a, ande C b. The
Few = {(¢ C9) €CIM(¢) C M(y)}. diagram below the top on the left depicts the closuré/gf with re-

. . spect to intersection of nonempty subsets and union of bounded sub-
Let us explore more closely the relation between a given for- . . ) : .

. . . sets. It is the canonical universe of the extension of the above simple
mal context and the canonical universe of its completbeory. As

shown in Section 2, a formal context, i.e. a satisfaction relation inheritance theory by the exclusion statement e < A. Addition
' e of the Horn statemeritA ¢ C d further weakens the closure proper-
from U to X, determines a specialization relatighon U; see (1). . . . . .
. . ) ties of the associated canonical universe. If the statetnentC d is
In addition, the (pre)order-preserving functier; from U to p(X)

. ) added to the simple inheritance theory before the exclusion statement
?Sf"}?)l |b i (:)(}?kgf: Ul?ég neeri'f ':isp ilolt_itri/giobﬁrtzet)g;\%ie cNe C A, the resulting effect on the respective canonical universes is
M M - M —Lo=

there is no guarantee adentity of indiscerniblesi.e. different ele- as depicted by the right branch of Figure 3. Finally, adding the state-

. ments VC aVVbanda Ab C cV e leads to a complete observational
ments ofU may satisfy exactly the same memberssbfWe have - ~ ] .
) ) . theory of M, whose canonical universe consequentl/is.
Un ~ U/~ instead, withe ~ y iff ear(x) = enr(y). y q Wis

Now notice hat the canoniceltheory c(t4y) associated with it 5 SR TEE e o e, o s ol
U coincides withTe, v for by (3), em(z) E ¢ iff x E ¢. So

. . . lows: TheC-theories consitute theypothesis spack of the learning
we can apply Theorem 2 to characterize the canonical universe of a . .

. S problem, whereas theersion spacevith respect to/ and M con-
completeC-theory of M. For instance, if" is a complete Horn the-

ory of M thenC(T") is the closure of/x; with respect to nonempt sists of allC-theories with modeM . The commitment to statement
ory . ! . oM resp >Mpty typeC determines thenductive biasone can fit the data only as well
intersection and directed union; similarly,lifis a complete simple

. . ; . asC permits. On the other hand, (f is too expressivegverfittin
inheritance theory oM thenC(T") is the closure of{a; with respect cp . . @ ; P €0 9

to intersection and union can occur: the induced theory explains the given data perfectly but
) does not allow generalizations. See Section 4.2 for a more thorough

8 Beware,(U, 33, F) is called aclassificationin [1]. discussion of this problem.
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Figure 3. Canonical universes of complefetheories of formal context

3.2 Concept lattices

Formal Concept Analysis associates with each formal context a
(complete) lattice of formal concepts. fdrmal conceptof a con-

text (U, X, F) is a pair(V, X) consisting of a set’ C U of objects
(theextenj and a setX C X of attributes (thenten? such thatX is

the set of those attributes that are shared by all objedts efhereas

V consists of all objects that have all attributes®dfSo(V, X)) is a
formal concept just in casé™ = X and X * = V, where

V> ={peX|VzeV(zEp} = N{em(x)|z eV},
XY ={zeU|¥WeX(@Fp} = {Mpl|pecX},

and M is the interpretation function associated with the formal con-
text. Clearly((V*)<, V™) is a formal concept for eacik C U.
Furthermore, every formal concept of the context is of the form
{((V»)4, V™). The set of all formal concepts is partially ordered
by thesubconcept-superconcept-relatieh which is defined as fol-
lows:

(V1,X1) < (Vo, Xo) iff Vi CVe iff X, D Xo.
The set of formal concepts ordered Byforms a complete lattice,
the so-calleadoncept latticeof the formal context.

By definition, the sef{ V> | V C U} of intents is the closure of
Un = {em(z)| = € U} with respect to intersection. Since in the
finite case, the set of intents is trivially closed with respect to directed
union, it follows by Theorem 2:

Theorem 3 The set of intents determined by a finite formal context is
precisely the canonical universe of the complétéree Horn theory
of that context.

The following diagram summarizes the correspondence between
(finite) concept lattices and canonical universed dfee Horn theo-
ries (see also [5], [6]).

' p-free Homa < Set of attribute implications

~

canonical universes—————  concept lattice

4 INDUCTION OF HIERARCHICAL
CLASSIFICATIONS FROM LINGUISTIC
DATA

4.1 Applying Formal Concept Analysis to the
induction of monotonic linguistic hierarchies

Modern linguistic theories regard linguistic knowledge to a large part
as being lexical (e.g. HPSG [15], [18]). The lexicon is hierarchically
structured in order to capture generalizations over linguistic enti-
ties. In general, these lexical hierarchies are constructed manually
by linguists using linguistic knowledge and theory-driven hypothe-
ses. However, in order to be independent of any specific theory, most
of the linguistic databases contain purely unstructured data. For ex-
ample, the lexical database CELEX, compiled by the Dutch Center
for Lexical Information, consists of three large electronic databases
and provides users with detailed English, German and Dutch lexical
data. The German database, which serves us as a test database, holds
51.728 lemmas with 365.530 corresponding word forms.



The automatic induction of linguistic hierarchies is desirable bothsentially two roles: first, they can introduce new information, which
from a practical and a theoretical point of view. On the one hand, iwill be inherited by subnodes and second, they “collect” information
makes the processing of large amounts of data possible and providé®m their supernodes and transmit it “bundled up” to their subnodes.
fast results. On the other hand, it is of theoretical interest to comUnlabeled nodes are nodes which only perform information bundling
pare an automatically induced classification with existing linguisticand not information introduction. Nodes that do not bundle up infor-
descriptions, in order to reveal the linguistic assumptions made bynation are necessarily labeled. (They aréreducible in that they
the human experts. Furthermore, an automatically induced hierarchyave less than two direct upper neighbors.) Altering the hierarchy by
can guide the linguist in analyzing new linguistic data. To this end,varying the underlying theory which models the data of the context
the induced hierarchy should exhibit as much of the implicitly given changes the proportion between the information introducing and the
information as possible, and the original flat input data should alinformation bundling nodes.
ways be reconstructible from the induced hierarchy. Formal Concept
Analysis satisfies these demands. It has already been applied to the2 . d .. f latti
following linguistic areas: meronymy ([17]), WordNet ([16]), seman- ™+ Extensions and restrictions of concept lattices

tics of speech-act-verbs ([9]), and verb paradigms ([8]). Among the different hierarchical representations of a given data set
Table 2 shows a many-valued formal context based on CELEXhere is none which is optimal in every respect. Rather, the question

that models a part of the German nominal inflection. It containsig (4 find the most appropriate representation depending on the task
the gender |nformqt|on and the inflectional paradigms of elght Gerior which the hierarchy is built. Two criteria must be met by any
man n‘ouns’P(Ierr mister, Nam‘e name 'Staf"‘t sta’te‘,Hem’dgshlrt, reasonable representation: it must be complete and consistent with
Farbe‘color, Bett'bed’, Onkel'uncle’, Ufer ‘bank’/ ‘shore’) " Ifthe - ogpect to the data. Furthermore, a good representation is maximally
features of this context are scaled with respect to the nominal scalgiformative, maximally compact, and avoids redundancies by captur-
(see [7]), one ends up with a one-valued context consisting of €ighfyy generalizations. Unfortunately, it is not possible to construct an

objects and 19 attributes. This will be our example context in thepheritance hierarchy which is optimal with respect to each of these
remaining part of the paper. criteria.

= c = o e S o Whgt does .it mean t_o say that an hierarchical _net\_/vork is_maxi-

by e 2 | 8 S S o | 8 g mally informative? In principle, every hierarchy which is consistent

g o 2 2| 2|5 5 5 5 and complete with respect to the data is equally informative in the
o o 7 ‘B » |a|la|a|a sense that the original context can be reconstructed from the hierar-

Herr mascl * | *nl*nl*nl*nl*nl*nl*n chy. But consider the hierarchy in Figure 5, which corresponds to the
complete observational theory of the example context: Since two of

Name || masc| * |*ns|*.n|*n | *n|*n|*n|*n the objects in the example are either indiscernible or incommensu-

Staat | masc| * | *s | * | * |[*n|*n|*n|*n rable, the hierarchy iiat; only the fact that indiscernible objects are

Hemd|| neut| * | *s | * * |*n|l*n|*n|*n merged discriminates this representation from the one in Table 2. For
Farbe || fem | * * * * | *nl*nl*nl*n the observer the flat hierarchy is less informative than the concept

Bett neut | * | *s | * * 1 *nl*nl*n|*n lattice, although from the viewpoint of the underlying theories, the
Horn theory is a subtheory of the observational theory and therefore

Onkel|| masc| * | *s | * | * | * | * |*n|* less informative. Since we are interested in the induction of hierar-
Ufer || neut| * | *s | * | * | * | * |*n| * chical representations, we record that hierarchies differ with regard

to the amount of information they exhibit explicitly. If the hierarchy
Table 2. Example data: derivational paradigms of eight German nouns 1S designed to be viewed by human beings it should maximize this
amount of information.
The compactness of a network can be measured in several re-
spects, but in what follows we will only look at the number of nodes.
Figure 4 shows the concept lattice which corresponds to our examFhe compactness criterion clearly favors the network of the observa-
ple context. As usual, only the attribute and the object concepts aréonal theory.
labeled™® The concept lattice represents a monotonic multiple inher- A good representation avoids redundancy by capturing general-
itance hierarchy, where a node inherits all the attributes labeled to itgations. In the flat hierarchy determined by the complete observa-
supernoded! Notice that conflicting attributes cannot be inherited, tional theory (see Figure 5) no generalizations are captured and there-
since the hierarchy is constructed on the base of the subset relatié@re, several attributes have to be stated more than once (e.g. “gen-
of concept intents. der:masc”). In other words, the complete observational theory leads
Let us focus more closely on the four unlabeled nodes of the exto “overfitting”. In the concept lattice (see Figure 4) all generaliza-
ample concept lattic¥ In an inheritance hierarchy nodes have es-tions are captured and every attribute and every object occurs exactly
once; such a representation is said to be free of redundancy.
9 % represents the root of the derived word form. For example, if the feature  Is there any representation that has this desirable property but is

“sing dat” has the value “n” at the object “Name”, that means that the ore compact than the concept lattice? It follows from Section 2.3
singular dative form ofNameis Namen As usual, the unstressed vowel

(the so-calledschw is disregarded since its occurrence is determined bythat such a representation is the canonical universe of an extension of
phonological rules. a complete-free Horn theory describing the concept lattice by dis-
10 Theattribute conceptissociated with an attribueis the greatest concept  junctive rules that are consistent with respect to the data. Recalling

whose intent containsand theobject conceptf an object: is the smallest  the o different roles of nodes in inheritance hierarchies we can dis-
COnCept whose extent contains

11 An inheritance hierarchy is said to be multiple if it is not excluded that a PeNSe With the four nodes which only bundle up information. This re-
node has more than one supernode from which it inherits. sults in the inheritance network in Figure 6, which is the partially or-
12 We will disregard the unlabeled bottom node. dered set of the attribute and object concep®C-poset, bounded
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Figure 5. Generic universe of the complete observational theory




by a top and a bottom node. (Notice that in the case of a reduced.3 Classification trees

context the AOC-poset consists exactly of thérreducible and the . . . .
v-irreducible nodes of the concept lattice.) The theory describing théAII hierarchical representations presented so far make use of multiple
AOC-poset consists of all the rules from the Horn theory Correspcmdi_nheritance, whereas in traditional linguistics, hierarchical classifica-
ing to the concept lattice and an additional disjunctive rule for eacffions are usual_ly presented_ln fo_rm of taxonomic trees._ln modern
concept which is neither an object nor an attribute concept. Thesi'9uistic theories, multiple inheritance is included but in general
rules are obtained in the following way: For each concept node ir{estrlcted to specna_l cases like multl-dlmensm_nal |_nher|ta_nce (e.g.
guestion, the conjunction of its intent forms the premise, and the dis-HPSG’ (15]). Even in these ap_pr(_)aches, tre_e-llke hierarchies p_Igy a
junction of the intents of its subconcepts without the intent of theProminent role. Their characteristic property is that the subclassifica-
tion at each node is based on the different values of a single feature.

concept itself forms the conclusion of the new rule. In our example, PO " . N

one has to add the following rules in order to get the AOC-poset: Letus b_rleﬂy indicate by examplc_e how to cu_t OUt_ (_:Iass_lflcatlon
trees of this type from concept lattices by adding disjunctive rules.
Figure 8 shows such a tree for the data of Table 2. It first classifies
the nouns with regard to their gender, which defines the full inflec-

: " %
sing gen:xs A plur nom: *n tional paradigm of the feminine nouns. The neuter nouns are then

Asingdat:* C gender: neut gender: masc  fyrther classified according to their plural marking strategy, while
sing gen:*s A gender: masc C  plur nom:* v plur nom:*.n the masculine nouns are first specified with respect to their singu-
sing dat:* A plurnom:*n C gender: femv sing gen: *s lar accusative forms and then their plural and their singular genitive
C

forms respectively. The tree of Figure 8 is the canonical universe of
the theory consisting of (a) the conjunctive statements corresponding
to the concept lattice, (b) exclusionary statements which ensure the

incompatibility of the feature values, and (c) the following disjunc-
Compared to the concept lattice, the AOC-poset is more compagiye rules:

and also free of redundancy. But itis not as informative as the concept
lattice, since the information about common attributes is not captured
in single nodes anymore. In the worst case, the AOC-poset has only
four levels: the top and the bottom nodes, the level of the attribute plur nom:*.n
nodes, and the level of the object nodes. This happens if, first, all
objects mt_ents and, second,_all att_rlbute extents are pairwise INCOMotice that the conclusions of these rules specify the selectable val-
parable with respect to set inclusion. Nevertheless, the AOC-posetes for a single feature
is more informative than the complete observational theory since iy Of course. the form c;f the classification tree is not determined by
simplifies the access to the information to which objects an attributt?he given fo’rmal context. Figure 9 shows a different classification
applies and it shows the hierarchical relatiqns between the attribute%ee’ where the sorting decisions are done in another order. It has
. . . ' accusative form of the masculine nouns, there are only two nouns left
tic data sets the difference in compactness between AOC-posets an

. . . which have to be further distinguished by fixing their plural forms. In
concept lattices can be dramatic. For instance, the number of node g y 9 L

in the concept lattice capturing the derivational information of Ger-O?Cler to get this tree, one can employ the following disjunctive rules:

man lemmas contained in the lexical database CELEX is greater than

72.000, whereas the number of nodes in the corresponding AOC-  sing acc:* C gender: femv gender: masy gender: neut

poset is less than 4.000. (The underlying formal context consists of plur nom:*n C sing gen:*Vv sing gen:*sV

9.567 objects and 2.032 attributes.) Hence, switching to the AOC- sing gen:*n Vv sing gen:*ns

poset reduces the memory requirements. Moreover, since the AOC-

poset is just the partial order of the attribute and object concepts,

there is an efficient construction algorithm. To summarize, compared The indeterminateness of classification trees is the main argument

to concept lattices, AOC-posets provide a very simple method to inagainst them. But one should keep in mind that trees are much easier

duce redundancy-free inheritance hierarchies from huge databasds.read than multiple inheritance networks, because they do not have

Inference tasks, however, are better supported by concept latticegfossing lines. Therefore it would be interesting to have a system

due to the explicit representation of shared attributes. which allows to switch between different classification trees and the
Having discussed the case of adding rules to a complete Horn thegoncept lattice or the AOC-poset.

ory, it remains to consider the omission of rules. Switching to the Finally, it has to be emphasized that we do not propose to construct

complete simple inheritance theory without exclusions seems to bdecision trees from concept lattices by adding rules to the underlying

overdone, because for the example context of Table 2 the resultheory, because for inducing decision trees a lot of efficient tools are

ing lattice has 78 concepts. Since the attributes of the example a@vailable. The purpose of presenting classification trees is solely to

feature-value pairs, where the values of each feature are incompaghow that besides AOC-posets trees can also be characterized as an

ible, it makes sense to take the complete simple inheritance theor§xtension of concept lattices.

with exclusions instead. The corresponding hierarchy has 21 ele-

ments, witness Figure 7, and is hence less compact than the concept TLOOK

lattice. The simple inheritance theory is weaker than the one describ-

ing the AOC-poset or the concept lattice; it is thus more likely thatIn addition to purely monotonic inheritance hierarchies, nonmono-

a new object can be inserted without serious changes to the structutenic approaches are becoming more and more important in linguis-

of the lattice. tic theories (e.g. [4], [3]). In [14] one finds a first discussion of the

plur nom:*.n A gender: masc sing dat:*nV sing gen: *s

sing acc:* gender: femv gender: mas¥ gender: neut

Cc
C sing acc:*V sing acc:*n



gender: neut

sing dat: *
sing acc: *

sing gen: * s

plur nom: *
plur gen: *
plur acc: *
Hemd
Bett
Ufer Onkel
Figure 6.
plur nom: *
plur gen: *
plur ace: *

plur nom: * n
plur gen: * n
lur acc: * n

gender: masc

sing dat: * n
sing acc: *_n

Staat
gender: fem -
sing gen: * sing gen: * n sing gen: * ns
Farbe Herr Name

AOC-poset corresponding to Table 2

sing nom: *
plur dat: * n

sing dat: *
sing acc: *
[ =

plur nom: ¥ n
plur gen: * n
plur acc: * n

sing dat: * n
sing acc: ¥ n

Figure 7. Simple inheritance hierarchy with exclusions



plur dat:*_n

sing nom:*
gender:fem
sing gen:*

: sing dat:*
gender: neut sing acc:*
sing ge?; S plur nom:*_n
sing da - plur gen:*_n
sing acc: plur acc:*_n

O
sing dat:*_n
sing acc:*_n
plur nom:*_n ; *
plur gen:*_n sing dat..* plur nom:*_n plur nom:*
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(@)
Figure 8. A possible classification tree
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sing gen:*_ns| |Sing gen:_n
sing dat:*_n sing dat”_n
- ~ sing acc:*_n sing acc:”_n
z:gg g:p; =S plur nom:*_n plur nom; _n plur nom:*_n plur nom:*
sing acé'* plur gen:*_n plur gen:._n plur gen:*_n plur gen:*
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Figure 9. Another class

ification tree



potentials of applying Formal Concept Analysis to the induction of{16]

regularities, subregularities, and exceptions in order to obtain reason-

able nonmonotonic inheritance hierarchies. This is a topic of currerP’H]
research.
Another possible application of the presented approach is to af418]

low disjunctive rules in attribute exploration tasks. As discussed in

Section 4.2, the problem is to avoid accepting too many disjunctivélg]

rules, since otherwise, in the case of incommensurable objects the

exploration would always end in a flat hierarchy like that of Figure
5. One way to prevent this could be to introduce two steps: first, thé0]

standard attribute exploration is performed and second, each concept
which is not yet an attribute or an object concept is tested to detebl]
mine whether there is any object in the universe to which exactly the
attributes of its intent apply. If so, the object is added to the context
and if not, a disjunctive rule is added which excludes the concept
from the canonical universe. In an exploration tool the concept could

be tested by presenting the corresponding disjunctive rule (see Sec-

tion 4.2) and asking if there is any known counter example.

Furthermore it would be interesting to explore possible ways to
automatically shift from one theory to another, based on parameters
like compactness monitored during incremental construction of the

inheritance hierarchy.
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