Describe the given vocabulary using the right terminology(constants, relation, property, arity).
{ (LOVE,2),
(CUSTOMER,1),
(ROBBER,1),
(MIA,0),
(VINCENT,0),
(HONEY-BUNNY,0),
(YOLANDA,0) }.
Exercise 1.1.2 Devise a simple Prolog notation for representing vocabularies (for example, use Prolog lists in place of the curly-brackets and ordered pairs). Write a predicate is_vocab/1
which checks that something written in your notation really is a first-order vocabulary. For example, it should check that each symbol is associated with a number giving its arity, and that no symbol is used in two different ways.
Hint 1: test your predicate on one of the following lines, depending on the vocabulary notation you have chosen.
Hint 2: you may use integer/1
, atom/1
, member/2
and not/1
% Prolog representation of a vocabulary (1)
is_vocab([[love,2], [hate,2], [customer,1], [vincent,0], [honey_bunny,0]]).
% Prolog representation of a vocabulary (2)
is_vocab([(love,2), (hate,2), (customer,1), (vincent,0), (honey_bunny,0)]).
% Prolog representation of a vocabulary (3)
is_vocab([relation(love,2), relation(robber,1), constant(vincent), constant(mia)]).
% Prolog representation of a vocabulary (4)
is_vocab([relation(love,2), relation(sad,1), constant(butch,0), constant(mia,0)]).
A model is an ordered pair (D,F) with domain D and interpretation function F.
Describe the model F.
D3 = { d1 , d2, d3, d4, d5}
F3(MIA) = d2
F3(HONEY-BUNNY) = d1
F3(VINCENT) = d4
F3(YOLANDA) = d1
F3(CUSTOMER) = {d1,d2,d4}
F3(ROBBER) = {d3,d5}
F3(LOVE) = {(d3,d4)}.
Exercise 1.1.4 Consider the following situation: There are four blocks. Two of the blocks are cubical, and two are pyramid shaped. The cubical blocks are small and red. The larger of the two pyramids is green, the smaller is yellow. Three of the blocks are sitting directly on the table, but the small pyramid is sitting on a cube. Devise a suitable vocabulary and present this situation as a model.
A first-order language over a vocabulary uses the following ingredients:
Some terminology:
Defintion of well formed formulas (wffs):
- All atomic formulas are wffs.
- If ϕ and ψ are wffs then so are ¬ϕ,(ϕ∧ψ),(ϕ∨ψ),(ϕ→ψ).
- If ϕ is a wff, and x is a variable, then both ∃xϕ and ∀xϕ are wffs. (We call ϕ the matrix of such wffs.)
- Nothing else is a wff.
Klammern werden wie üblich nach folgender Konvention (Päzedenzordnung) weggelassen:
Zusätzlich lassen wir die äußeren Klammern weg und die Klammern in einer mehrgliedrigen Konjunktion oder Disjunktion (Assoziativitätsgesetz).
Beispiel: Statt ((a∨b)→c) schreiben wir auch a∨b→c. Und statt ((a∨b)∨c) schreiben wir auch a∨b∨c.
Vorsicht: bei den Quantoren gibt es unterschiedliche Konventionen. Hier im Buch und somit auch im Kurs wird den Quantoren die höchste Präzedenz und somit die engste Bindung zugeordnet. Sprich, ∃xdog(x)∧bark(x) ist äquivalent zu (∃xdog(x))∧bark(x) und nicht zu ∃x(dog(x)∧bark(x)).
free/bound variables:
- Any occurrence of any variable is free in any atomic formula.
- If an occurrence of any variable is free in ϕ or in ψ, then that same occurrence is free in ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), and (ϕ→ψ).
- If an occurrence of a variable x is free in ϕ, then that occurrence is free in ∀yϕ and ∃yϕ (for any variable y distinct from x). However, no occurrence of x is free in ∀xϕ and ∃xϕ .
- The only free variables in a formula ϕ are those whose freeness follows from the preceding clauses. Any variable in a formula that is not free is said to be bound.
A formula that contains no occurrences of free variables is called a sentence of first-order logic.
This is not a sentence: ∀y(LOVE(x,y)→ROBBER(y)).
But this is: ∃w∀y(LOVE(w,y)→ROBBER(y)).
Exercise 1.1.5 Represent the following English sentences in first-order logic:
Exercise 1.1.8 (optional) Give an inductive definition of subformulahood. That is, for each kind of formula in the language (atomic, boolean, and quantified) specify exactly what its subformulas are. The subformulas of a formula ϕ are ϕ itself and all the formulas used to build ϕ.
Frage: Warum lässt sich nicht so ohne weiteres induktiv (in terms of subformulas) definieren, wann ein Satz in einem Modell wahr ist?
satisfaction ⊆ formulas × models × assignments
Given a model M = (D, F), an assignment of values to variables in M (or more simply, an assignment in M) is a function g from the set of variables to D.
Let M = (D, F) be a model, let g be an assignment in M, and let τ be a term. Then the interpretation of τ with respect to M and g is F(τ) if τ is a constant, and g(τ) if τ is a variable. We denote the interpretation of τ by IgF(τ).
Let g be an assignment in some model M, and let x be a variable. If g’ is also an assignment in M, and for all variables y distinct from x we have that g’(y)= g(y), then we say that g’ is an x-variant of g.
Let ϕ be a formula, let M = (D, F) be a model, and let g be an assignment in M. Then the relation M,g⊨ϕ (ϕ is satisfied in M with respect to the assignment g) is defined inductively as follows:
A sentence ϕ is true in a model M if and only if for any assignment g of values to variables in M, we have that M,g⊨ϕ. If ϕ is true in M we write M⊨ϕ.
Exercise 1.1.10 Consider the model with D={d1,d2,d3,d4,d5} and the following interpretation function F:
F(MIA) = d2
F(HONEY-BUNNY) = d1
F(VINCENT) = d4
F(YOLANDA) = d1
F(CUSTOMER) = {d1,d2,d3}
F(ROBBER) = {d3,d5}
F(LOVE) = {(d3,d4)}
Are the following sentences true or false in this model?
∃xLOVE(x,VINCENT)
∀x(ROBBER(x)→¬CUSTOMER(x))
∃x∃y(ROBBER(x)∧¬ROBBER(y)∧LOVE(x,y))
Exercise 1.1.11 (optional) Give a model that makes all the following formulas true:
HAS_GUN(VINCENT)
∀x(HAS_GUN(x)→AGGRESSIVE(x))
HAS_MOTORBIKE(BUTCH)
∀y(HAS_MOTORBIKE(y)∨AGGRESSIVE(y))
Exercise 1.1.15 (optional) We claimed that when evaluating sentences, it doesn’t matter which variable assignment we start with. Formally, we are claiming that given any sentence ϕ and any model M (of the same vocabulary), and any variable assignments g and g′ in M, then M,g⊨ϕ iff M,g′⊨ϕ. We want reader to do two things. First, show that the claim is false if ϕ is not a sentence but a formula containing free variables. Second, show that the claim is true if ϕ is a sentence.
An example of a function symbol is a 1-place function symbol FATHER which expresses fatherhood:
FATHER(FATHER(FATHER(VINCENT)))
- All constants and variables are terms.
- If f is a function symbol of arity n, and τ1,…τn are terms, then f(τ1,…τn) is also a term.
- Nothing else is a term.
A term is said to be closed if and only if it contains no variables.
This is a closed term: FATHER(MIA)
if τ is a term of the form f(τ1,…τn), then we define IgF(τ) to be F(f)(IgFτ1,…IgFτn)
= is a two-place relational symbol with fixed interpretation (logical symbol): For any model M, any assignment g in M, and any terms τ1 and τ2: M,g⊨τ1=τ2 iff IgFτ1=IgFτ2
Exercise 1.1.18 There is a famous analysis, due to the philosopher Bertrand Russell, of the meaning of the determiner the in sentences like The robber is screaming. Russell claims that this sentence would be true in some situation if (a) there was at least one robber in the situation, (b) there was at most one robber in the situation, and (c) that robber was screaming. Write down a first-order sentence which expresses this analysis of The robber is screaming. Note: you will have to use the equality symbol.
The domain can be sorted into subclasses (animate/inanimate ). The interpretation of a sorted variable is restricted to its corresponding subclass.
Haben Sie noch mehr entdeckt? Können Sie die Vergleiche nachvollziehen?
Die Autoren betonen, dass aus Sicht der Linguistik satisfaction ein wichtiger Begriff ist als truth, warum?
The Querying Task: Given a model M and a first-order formula ϕ, is there an assignment g such that ϕ satisfied in M with respect to g?
pretheoretic concept:
Example: Mia smokes and Mia does not smoke.
A first-order formula is called satisfiable if it is satisfied in at least one model. A formula that is not satisfiable in any model is called unsatisfiable.
A finite set of formulas ϕ1,…ϕn is satisfiable if ϕ1∧…∧ϕn is satisfiable.
Note that satisfiability (and unsatisfiability) are model-theoretic or (as it is sometimes put) semantic concepts.
That is, both concepts are defined using the notion of satisfaction in a model, and nothing else. Furthermore, note that satisfiability (and unsatisfiability) are mathematically precise concepts: we know exactly what first-order languages and first-order models are, and we know exactly what it means when we claim that a formula is satisfied in a model.
The Consistency Checking Task: Given a first-order formula ϕ, is ϕ consistent (that is: satisfiable) or inconsistent (that is: unsatisfiable)?
A valid formula is a formula that is satisfied in all models (of the appropriate vocabulary) given any variable assignment. If ϕ is a valid formula we write ⊨ϕ. A formula that is not valid is called invalid (⊭).
Suppose \phi_1, \ldots , \phi_n, and \psi are a finite collection of first-order formulas. Then we say that the argument with premises \phi_1, \ldots , \phi_n and conclusion \psi is a valid argument if and only if whenever all the premises are satisfied in some model, using some variable assignment, then the conclusion is satisfied in the same model using the same variable assignment. The notation \phi_1, \ldots , \phi_n \models \psi means that the argument with premises \phi_1, \ldots , \phi_n and conclusion \psi is valid.
Alternative terminology:
The Informativity Checking Task: Given a first-order formula \phi, is \phi informative (that is: invalid) or uninformative (that is: valid)?
Exercise 1.2.7 The following terminology is useful: if \phi_1, \ldots, \phi_n \models \neg \psi, then we shall say that \psi is inconsistent with respect to \phi_1, \ldots, \phi_n. Show that \psi is inconsistent with respect to \phi_1, \ldots, \phi_n, if and only if \neg \psi is uninformative with respect to \phi_1, \ldots, \phi_n,
Exercise 1.2.2 The Semantic Decuction Theorem for first-order logic says, that \phi_1, \ldots , \phi_n \models \psi if and only if \models(\phi_1 \wedge \ldots \wedge \phi_n ) \rightarrow \psi (That is, we can lump together the premises using \wedge, and then use \rightarrow to state that this information implies the conclusion). Prove the Semantic Deduction Theorem.
Consistency and informativity are related concepts: