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Decision problem

A decision problem is a problem of the form “Given (xi, ..., X;), can we decide
whether y holds?” J
@ Atuple (x1,...,Xp) is called an instance of the problem.
@ Atuple (x4,...,Xy) for which y holds is called a positive instance of the
problem.
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Languages and problems

@ Problems have the form: “Can we decide for every x whether it has
property P?”

@ Languages as problems: “Can we decide for every word whether it
belongs to L?”

@ Problems as languages: “The language of all x which have property P
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Languages and problems

@ Problems have the form: “Can we decide for every x whether it has
property P?”

@ Languages as problems: “Can we decide for every word whether it
belongs to L?”

@ Problems as languages: “The language of all x which have property P

examples:

@ Can we decide for any pair (M, w) consisting of a Turing machine M and
a word w whether M halts on w?

@ Can we decide for any pair (Gy, Gz) of two context-free grammars
whether L(G1) = L(Gz)?

@ Can we decide for any context-free grammar G whether L(G) = 0?
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T —
Languages and problems

problem instances versus problems

@ Single instances are not problems! Whether ‘S — &’ generates a word is

simple to answer, but not the general problem ranging over all possible
instances.

@ Problems can be represented by sets with positive instances as
elements.
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decidabiltiy

A language L C X* is decidable if its characteristic function x; : ¥* — {0, 1} is computable:

1, wel
xr(w) = 0, wel

Alanguage L C Y* is semi-decidable if x; : ¥* — {0, 1} is computable:

W)= 1, welL
XL =9 undefined, w ¢ L

“yes” ))) “yes”

“no” semi-decider

decider

===
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decidabiltiy

A language L C X* is decidable if its characteristic function x; : ¥* — {0, 1} is computable:

1, wel
xr(w) = 0, wel

Alanguage L C Y* is semi-decidable if x; : ¥* — {0, 1} is computable:

W)= 1, welL
XL =9 undefined, w ¢ L

“yes” ))) “yes”

“no” semi-decider

decider

===

@ L is decidable if and only if L and L are semi-decidable.
@ Alanguage L is recursively enumerable (RE) if and only if L is semi-decidable.
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Decision problems for formal languages

Given: grammars G= (N,%,S,R), G = (N, X', S, R’), and aword w € X:
word problem: Is w derivable from G, i.e. w € L(G)?
emptiness problem: Does G generate a nonempty language, i.e. L(G) # 07

equivalence problem: Do G and G’ generate the same language, i.e.
L(G) = L(G)?
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Type3 | Type2 | Typel | TypeO
word problem D D D U
emptiness problem D D U U
equivalence problem D ) U )

D: decidable; U: undecidable
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Decision problems for formal languages

Type3 | Type2 | Typel | TypeO
word problem D D D U
emptiness problem D D U U
equivalence problem D U U )

D: decidable; U: undecidable

@ word problem for Type1: use the property that the derivation string does
not shrink in any derivation step.

@ emptyness problem for Type2: bottom up argument over the
non-terminals from which terminal strings can be derived.

@ equivalence problem for Type3: check via minimal automaton.

Petersen & Balogh (HHU) Decision Problems NASSLLI 2014 7124



Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It
takes as input

@ the description of a Turing machine M and
@ an input string w
and accepts w if and only if M accepts w.
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Universal Turing machine

An universal Turing machine U is a TM that simulates arbitrary other TMs. It
takes as input

@ the description of a Turing machine M and
@ an input string w
and accepts w if and only if M accepts w.

Construction idea: Use a 2-tape Turing machine
@ 1sttape: encoding of M
@ 2nd tape: w

The universal machine reads the code of M on tape 1 to see what to do with
the word on tape 2 (tape 1 is not changed).
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A Godel numbering is a function G : M — N with
@ Gisinjective
@ G(M) is decidable
@ G: M~ Nand G : G(M) — M are computable
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Gddel numbering

A Godel numbering is a function G : M — N with
@ Gis injective
@ G(M) is decidable
@ G: M~ Nand G : G(M) — M are computable

Godel numbering of TMs (using binary code)

@ Given M = (Q,%,T,4, 94,0, F), we assume that

Q:{q1aq27"'}
M= (X, Xe,...}
D:X1
F ={q:}
Di=R,D,=L

@ Code each transition 5(g;, X;) = (qk, Xj, Dm) as 0'10/10%10/10™
@ Note that this code never has two successive 1’s.

@ Code M by concatenating all transition codes C; with ‘11°-strings as separators:
G(M) =11C111C211C3 ... 11Cp.

@ M — G(M) is a Gédel numbering of Turing machines.

Note: {G(M)|M is a TM} and {M|M is a TM} are countable sets.




H = {G(M)#w|M(w) halts}
@ Given a Turing machine M and an input word w.
@ Does M halt if it runs on input w?
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Halting problem

H = {G(M)#w|M(w) halts}
@ Given a Turing machine M and an input word w.
@ Does M halt if it runs on input w?

The halting problem is undecidable.
Proof by a diagonal argument:

W1 Wo W3 Wy W5 W W7 Wg Wg... @ Assume that the halting problem is decidable.
Gi /01101001 1...
G |01 0111010
Gs|101010101
Gy |01 1101011
Gs |01 0101101
Gs|110101100
Gz|01 0101010
Gg|111010101
Gg|1t10101111
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Halting problem

H = {G(M)#w|M(w) halts}

@ Given a Turing machine M and an input word w.

@ Does M halt if it runs on input w?

W1 Wo W3 Wy W5 Wg W7 Wg Wy ..

G
Gy
Gs
Gy
Gs
Ge

Gs
Gg
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The halting problem is undecidable.
Proof by a diagonal argument:

@ Assume that the halting problem is decidable.

= there is a TM H which computes for every TM M and
every word w, whether M halts on w.
Let w; be the i-th word and G; the TM with the i-th Godel
number.
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——
Halting problem
H = {G(M)#w|M(w) halts}

@ Given a Turing machine M and an input word w.
@ Does M halt if it runs on input w?

The halting problem is undecidable.
Proof by a diagonal argument:

W1 Wo W3 Wy W5 W W7 Wg Wg... @ Assume that the halting problem is decidable.
Gy 01101001 1... _ thereisaTM H which computes for every TM M and
G |01 0111010. every word w, whether M halts on w.
G (10101010 1. Let w; be the i-th word and G; the TM with the i-th Godel
G/ 01110101 1., number.
Gs |01 0101101. @ From H construct a second TM H’ which takes a word
Ge|110101100. w; as input and acts as follows:
Gz |01 0101010.. > Whenever H outputs 1 for (G;, w;), H’ goes into an
Gg|[111010101.. endless loop.
Go 110101 111. » Whenever H outputs 0 for (G, w;), H’ halts.

Petersen & Balogh (HHU) Decision Problems NASSLLI 2014 10/24



——
Halting problem
H = {G(M)#w|M(w) halts}

@ Given a Turing machine M and an input word w.
@ Does M halt if it runs on input w?

The halting problem is undecidable.
Proof by a diagonal argument:

W1 Wo W3 Wy W5 W W7 WgWy... @ Assume that the halting problem is decidable.
Gy 01101001 1... _ thereisaTM H which computes for every TM M and
G |01 0111010. every word w, whether M halts on w.
Gs|101010101. Let w; be the i-th word and G; the TM with the i-th Godel
G [011101011.. number.
Gs |01 0101101. @ From H construct a second TM H’ which takes a word
Gs|110101100. w; as input and acts as follows:
Gz |01 0101010.. > Whenever H outputs 1 for (G;, w;), H’ goes into an
Gg|[111010101.. endless loop.
Go 110101111, » Whenever H outputs 0 for (G, w;), H’ halts.
. = H'’is a TM of which the Gédel number is not in the

matrix.
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——
Halting problem
H = {G(M)#w|M(w) halts}

@ Given a Turing machine M and an input word w.
@ Does M halt if it runs on input w?

The halting problem is undecidable.
Proof by a diagonal argument:

W1 Wo W3 Wy W5 W W7 WgWy... @ Assume that the halting problem is decidable.
Gy 01101001 1... _ thereisaTM H which computes for every TM M and
G |01 0111010.. every word w, whether M halts on w.
Gs|101010101.. Let w; be the i-th word and G; the TM with the i-th Godel
G [011101011.. number.
Gs |01 010110 1.. @ From H construct a second TM H’ which takes a word
Gs|110101100.. w; as input and acts as follows:
Gz |01 0101010.. > Whenever H outputs 1 for (G;, w;), H’ goes into an
Gg|[111010101.. endless loop.
Go 110101111, » Whenever H outputs 0 for (G, w;), H’ halts.
. = H'’is a TM of which the Gédel number is not in the

matrix.

=- the assumption is wrong; the halting problem is
undecidable.
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Reduction

Given two languages LC Y*and K C *. Lis
reducible to K (in symbols L < K) if there exists a total
function f : X* — I'™*, such that

@ fis computable and
e wel&f(x)e Kforallwe X*.
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Reduction

Given two languages LC Y*and K C *. Lis
reducible to K (in symbols L < K) if there exists a total
function f : X* — I'™*, such that

@ fis computable and
e wel&f(x)e Kforallwe X*.

Lemma
@ If L < K and K is decidable, then L is decidable.
@ If L < K and K is semi-decidable, then L is
semi-decidable.

@ If L < K and L is undecidable, then K is
undecidable.

(— '\
uolnonpal

Y

decider
for K

= =
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Halting problem on the empty tape

Ho = {G(M)|M(e) halts}
@ Given a Turing machine M.
@ Does M halt if it runs on input €?
The halting problem on the empty tape is undecidable.
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Halting problem on the empty tape

Ho = {G(M)|M(e) halts}
@ Given a Turing machine M.
@ Does M halt if it runs on input €?
The halting problem on the empty tape is undecidable.

Proof by reduction H < Hp:
@ Let G(M)#w be an instance of H.
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Halting problem on the empty tape

Ho = {G(M)|M(e) halts}
@ Given a Turing machine M.
@ Does M halt if it runs on input €?
The halting problem on the empty tape is undecidable.

Proof by reduction H < Hp:
@ Let G(M)#w be an instance of H.

@ Define a Turing machine M, which starts with the empty tape, writes w
onto the tape, and simulates M on w.
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——
Halting problem on the empty tape

Ho = {G(M)|M(e) halts}
@ Given a Turing machine M.
@ Does M halt if it runs on input €?

The halting problem on the empty tape is undecidable.

Proof by reduction H < Hp:
@ Let G(M)#w be an instance of H.

@ Define a Turing machine M,, which starts with the empty tape, writes w
onto the tape, and simulates M on w.

o f: G(IM)#w — G(M,) is a computable function and
@ G(M)#w e He G(My) € Hy

Petersen & Balogh (HHU) Decision Problems NASSLLI 2014 12/24



Halting problem on the empty tape

Ho = {G(M)|M(e) halts}
@ Given a Turing machine M.
@ Does M halt if it runs on input €?
The halting problem on the empty tape is undecidable.

Proof by reduction H < Hp:
@ Let G(M)#w be an instance of H.

@ Define a Turing machine M,, which starts with the empty tape, writes w
onto the tape, and simulates M on w.

o f: G(IM)#w — G(M,) is a computable function and
@ G(M)#w e He G(My) € Hy
= Hp is undecidable.
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Theorem of Rice

If M is a Turing machine let fy be the function computed by M. A functional
property of M, i.e. a property of fy is non-trivial if there is at least one Turing
machine which has the property and one which has it not.
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Theorem of Rice

If M is a Turing machine let fy be the function computed by M. A functional
property of M, i.e. a property of fi, is non-trivial if there is at least one Turing
machine which has the property and one which has it not.

Theorem of Rice
Let P be a non-trivial property of Turing machines.
@ Given a Turing machine M.
@ Does M has property P?
Any non-trivial property of a Turing machine is undecidable.
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Theorem of Rice

If M is a Turing machine let fy be the function computed by M. A functional
property of M, i.e. a property of fi, is non-trivial if there is at least one Turing
machine which has the property and one which has it not.

Theorem of Rice
Let P be a non-trivial property of Turing machines.
@ Given a Turing machine M.
@ Does M has property P?
Any non-trivial property of a Turing machine is undecidable.

examples of non-trivial properties
@ The computed function is constant.
@ The Turing machine computes the successor function.
@ The Turing machine computes a total function.
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Given a non-trivial functional property. Proof by reduction Hy < P:
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Given a non-trivial functional property. Proof by reduction Hy < P:
@ Construct a TM M which never halts.

@ Assume M, does not have property P (argument for
G(M_ ) € P is analogous).
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Given a non-trivial functional property. Proof by reduction Hy < P:
@ Construct a TM M which never halts.

@ Assume M, does not have property P (argument for
G(M_ ) € P is analogous).

@ As P is non-trivial there is a TM Mp with G(Mp) € P.
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction Hy < P:
@ Construct a TM M which never halts.

@ Assume M does not have property P (argument for
G(M_ ) € P is analogous).

@ As P is non-trivial there is a TM Mp with G(Mp) € P. l

@ Construct a new TM M’. For any input w

» M’ first computes M(e) and if it halts
» M’ computes Mp(w)
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction Hy < P:
@ Construct a TM M which never halts.

@ Assume M does not have property P (argument for
G(M_ ) € P is analogous).

@ As Pis non-trivial there is a TM Mp with G(Mp) € P.
@ Construct a new TM M’. For any input w

» M’ first computes M(e) and if it halts
» M’ computes Mp(w)

If G(IM) ¢ Hy: M(e) does not halt and M’ computes M ,
thus G(M') ¢ P
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction Hy < P:

@ Construct a TM M which never halts.

@ Assume M does not have property P (argument for
G(M_ ) € P is analogous).

@ As P is non-trivial there is a TM Mp with G(Mp) € P.
@ Construct a new TM M’. For any input w

» M’ first computes M(e) and if it halts

» M’ computes Mp(w)

If G(M) ¢ Hy: M(e) does not halt and M’ computes M,
thus G(M') ¢ P

If G(M) € Hy: M(e) does halt and M computes Mp, thus
G(M') € P.
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction Hy < P:

@ Construct a TM M which never halts.

@ Assume M does not have property P (argument for
G(M_ ) € P is analogous).

@ As Pis non-trivial there is a TM Mp with G(Mp) € P.

@ Construct a new TM M’. For any input w

» M’ first computes M(e) and if it halts
» M’ computes Mp(w)

If G(IM) ¢ Hy: M(e) does not halt and M’ computes M ,
thus G(M') ¢ P

If G(M) € Hy: M(e) does halt and M computes Mp, thus
G(M') € P.

@ Asf: G(M)— G(M')is computable and
G(M) € Hy & G(M') € P, we proved Hy < P.
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Proof of Rice’s theorem

Given a non-trivial functional property. Proof by reduction Hy < P:

@ Construct a TM M which never halts.

@ Assume M does not have property P (argument for
G(M_ ) € P is analogous).

@ As P is non-trivial there is a TM Mp with G(Mp) € P.
@ Construct a new TM M’. For any input w

» M’ first computes M(e) and if it halts

» M’ computes Mp(w)

If G(IM) ¢ Hy: M(e) does not halt and M’ computes M ,
thus G(M') ¢ P

If G(M) € Hy: M(e) does halt and M computes Mp, thus
G(M') € P.

@ Asf: G(M)— G(M')is computable and
G(M) € Hy & G(M') € P, we proved Hy < P.

@ As Hj is undecidable, P is undecidable as well.
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Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
that x;, x;, ... Xi, = Vi Vi - - - Vin?

example with solution

i —omoo or—  [o[1[o[o[o]
2 0 000

3 01 1 0[1]

solution: 1223
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Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
that x;, x;, ... Xi, = Vi Vi - - - Vin?

example with solution
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solution: 1223




Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
that x;, x;, ... Xi, = Vi Vi - - - Vin?

example with solution
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2 0 000
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solution: 1223

example without solution
index  Xx; Yi nnn
1 0 01
2 100 001 o[1]o]o]1]

no solution




Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.
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Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
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solution: 1223
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Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
that x;, x;, ... Xi, = Vi Vi - - - Vin?

example with solution

I1n = :)('1000 5/’1 lo]1]ofo]ofo]ofo]1]
2 0 000
3 01 1 lo]1]o[o]o[o]ofo]1]

solution: 1223

example without solution

[o]1]o]o[1[o]o[1]o[o]1]o]o]

index  Xx; Yi
1 0 01
2 100 001 [o[1]o]o[1]o]o[1]o[o[1[0]0]1]

no solution




Post’s Correspondence Problem (PCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., i, € {1,2,...,k} such
that x;, x;, ... Xi, = Vi Vi - - - Vin?

example with solution

I1n = 311000 6/’1 [o]t]o]ofo]ofo]o]1]
2 0 000
3 01 1 [o[1]ofo]o]o[o]o][1]

solution: 1223

example without solution

[o]1]o[o]1]o]o[t]o]o][1]o]o]

index  Xx; Yi

1 0 01

2 100 001 lo]t]ofo[1]ofo[1[o]o[1]o[o]1]
no solution

v
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index  x; Yi shortes solution: 66 indices long
1 001 O

2 01 011

3 01 101

4 10 001



index  x; Yi shortes solution: 66 indices long
1 001 O

2 01 011

3 01 101

4 10 001

[o[1]1]o]

[o[+]1]o[o]1]



index  x; Yi

1 001 O

2 01 011

3 01 101
10 001

[of1]1]o]o[1][1]o]1]

shortes solution: 66 indices long




index  x; Yi shortes solution: 66 indices long
1 001 O

2 01 011

3 01 101

4 10 001
[o]1]+]o]o[1]1]o]

[of1]1]o]o[1]1]o[1]o[o]1]




index  x; Yi shortes solution: 66 indices long
1 001 O

2 01 011

3 01 101

4 10 001
[o]1]+[o]o[1]1]o]1]o]

[o]1]1]o]o[1][1]o]1]o[o]1]o]o][1]




index  x; Yi shortes solution: 66 indices long
1 001 O
2 01 011
3 01 101
10 001

[o]1]1[o]o[1]1]o[1]o[o]1[o]o[t]o[]1]




PCP: complex example
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PCP: complex example

index  x; Vi shortes solution: 66 indices long

1 001 0

2 01 011

3 o1 101

10 001

|||||||||||||||||||||||||||||
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[1]oJo[1]1[o[o]o[1]o[o]1]o][1]
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lo]o[1]o[1]1]o]1]o]1]o]o]1]o]o]1]o]1]o]o]1]o]o]1]0]0]1]0]
[1]1]o]o[1]1]o]o]o]1]o]1]o]o]1]1]0]1]0]o]1]o]o]1]1]o]0]0]
[1]o]o[1]o]1]1]o]o]o]1]o]o]1]o]1][0]o[1]o]0]1]0]1]0]0]1]0]

1]ofolo[1]o]0]1

1/0(0(1 01
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Modified Post’'s Correspondence Problem (MPCP)

Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.

Question: Is there a sequence of indices iy, o, ..., I, € {1,2,..., k} with
i1 =1suchthat x; x,, ... x;, = Vi Vi, --- Vi,
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Given: A finite set of word pairs (x1, ¥1), - .. (Xk, ¥k), With x;, y; € £F.
Question: Is there a sequence of indices iy, o, ..., I, € {1,2,..., k} with
i1 =1suchthat x; x,, ... x;, = Vi Vi, --- Vi,
MPCP PCP
index x; i f _index Xxi Yi
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@ To prove H < MPCP we need a computable reduction function
f: H— MPCP such that G(M) € H < f(M) € MPCP.
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The MPCP is undecidable, proof by H < MPCP

@ To prove H < MPCP we need a computable reduction function
f: H— MPCP such that G(M) € H < f(M) € MPCP.

@ A machine-word pair (M, w) is an instance of H, i.e. G(M)#w € H, iff
there is a sequence of configurations ¢y, ¢1, Gz . .. ¢ With ¢ = gow,
Ci = Ci+1, and ¢ has a final state.
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The MPCP is undecidable, proof by H < MPCP

@ To prove H < MPCP we need a computable reduction function
f: H— MPCP such that G(M) € H < f(M) € MPCP.
@ A machine-word pair (M, w) is an instance of H, i.e. G(M)#w € H, iff
there is a sequence of configurations ¢y, ¢1, Gz . .. ¢ With ¢ = gow,
Ci = Ci+1, and ¢ has a final state.
@ The idea is to code this into a MPCP problem:
index  X; Yi
T #  #c  [#|of#]o[#|ca|s]o|#]cs k|05 |#]co|#]
2 ci# #C,‘+1
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Be careful, this only shows the main idea. We are oversimplifying here as
neither the set of ¢; = ¢;1 nor the set of ¢;’s needs to be finite.
For a formal proof see Hopcroft & Uliman 1979.
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PCP restricted to {0, 1}

Proposition
PCP restricted to words over the alphabet {0, 1} is undecidable. J

@ Given a PCP instance p over an alphabet {a, ... ax} construct a PCP
instance p’ over {0, 1} by replacing every a; by 01'.
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PCP restricted to {0, 1}

Proposition
PCP restricted to words over the alphabet {0, 1} is undecidable. J

@ Given a PCP instance p over an alphabet {a, ... ax} construct a PCP
instance p’ over {0, 1} by replacing every a; by 01'.

@ pec PCP < p' € PCP

= PCP < PCP{OJ}
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Undecidable grammar problems

Proposition

Given two context-free grammars G;, Go, the following problems are
undecidable:

@ IsL(G1)NL(G2) =07 (GPry)

@ /s L(Gy) N L(Gy) infinite? (GPn )

@ Is L(Gy) N L(Gz) context-free? (GPA cF)
@ IsL(Gy) C L(G2)? (GPc)

@ IsL(Gy)=L(G)? (GP-)

Proposition
Given a context-free grammars G, the following problems are undecidable:
@ /s G ambiguous?
e Is L(G) infinite?
@ Is L(Gy) N L(Gz) context-free?
@ /s L(G) regular?

V.
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Given a PCP instance {(x1, ¥1), (X2, ¥2), - - ., (Xk, ¥« )} over {0, 1}, construct two grammars

S = AsB
A W AX| i A
G A oo Xl fiAx S = iSil|...|ikSiklT
& 11l Ge' T 0TO|TH|$
B — yPBil|...|yPBi
B — y1 I1||yflk
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Encode PCPs as grammars

Given a PCP instance {(x1, ¥1), (X2, ¥2), - - ., (Xk, ¥« )} over {0, 1}, construct two grammars

S - ASB
Ao BAx] A X S = Skl |kSKIT
Gt A =kl X Ge' T 0TO|TH|$
B — yPBi|...|yfBi

Grammar G; generates words of the form

Ing Iny ==+ In Xny - -+ Xnp Xny $ym1 ymz... y’"j Iml,... Imy Imy

Grammar G, generates words of the form
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Encode PCPs as grammars

Given a PCP instance {(x1, ¥1), (X2, ¥2), - - ., (Xk, ¥« )} over {0, 1}, construct two grammars

S - ASB
Ao BAx] A X S = Skl |kSKIT
Gt A =kl X Ge' T 0TO|TH|$
B — yPBi|...|yfBi

Grammar G; generates words of the form

Ing Ing -+ Iy Xry - Xnp Xy § Y, Yy ==+ Yoy Iy -+ I Iy

Grammar G, generates words of the form

L(Gy) N L(Gz) consists of words of the form:

i ; R; ; ; _ R _ R R
Ing - in vVTin, .. in, With v = Xp, ... Xp, and v =V Y
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Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
@ Is L(Gy) N L(G2) = 0? (GPn )
@ Is L(Gy) N L(Gy) infinite? (GPn,o0)
@ Is L(Gy) N L(Gy) context-free? (GPn cF)
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to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
@ Is L(Gy) N L(G2) = 0? (GPn )
@ Is L(Gy) N L(Gy) infinite? (GPn,o0)
@ Is L(Gy) N L(Gy) context-free? (GPn cF)

@ Recall, L(Gy) N L(Gz) consists of words of the form: in, . . . i, V$VFin, ... in, With
V=1Xp ... Xp and VA = yfl . yR
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Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
@ Is L(Gy) N L(G2) = 0? (GPn )
@ Is L(Gy) N L(Gy) infinite? (GPn,o0)
@ Is L(Gy) N L(Gy) context-free? (GPn cF)

@ Recall, L(Gy) N L(Gz) consists of words of the form: in, . . . i, V$VFin, ... in, With
V=1Xp ... Xp and VA = yfl . yR

@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if
L(Gy) N L(Gp) # 0.
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to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
Is L(Gy) N L(G2) = 0? (GPn )

Is L(G1) N L(Gy) infinite? (GPA, o)

@ Is L(Gy) N L(Gy) context-free? (GPn cF)

Recall, L(Gy) N L(G) consists of words of the form: in, .. . in, V8V, .. . in, with
V=1Xp ... Xp and VA = yfl . yR

@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if
L(Gy) N L(Gp) # 0.

= PCP < GPp, , the problem whether L(Gy) N L(Gz) = @ is undecidable.
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Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
Is L(Gy) N L(G2) = 0? (GPn )

Is L(G1) N L(Gy) infinite? (GPA, o)

@ Is L(Gy) N L(Gy) context-free? (GPn cF)

Recall, L(Gy) N L(G) consists of words of the form: in, .. . in, V8V, .. . in, with
V=1Xp ... Xp and VA = yfl . yR

@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if
L(Gy) N L(Gp) # 0.

= PCP < GPp, , the problem whether L(Gy) N L(Gz) = @ is undecidable.
@ If a PCP instance has one solution it has infinitely many solutions.
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Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
Is L(Gy) N L(G2) = 0? (GPn )

Is L(G1) N L(Gy) infinite? (GPA, o)

@ Is L(Gy) N L(Gy) context-free? (GPn cF)

@ Recall, L(Gy) N L(Gz) consists of words of the form: in, . . . i, V$VFin, ... in, With
V=1Xp ... Xp and VA = yfl . yR
@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if

L(Gi) N L(Gp) # 0.
= PCP < GPp, , the problem whether L(Gy) N L(Gz) = @ is undecidable.
@ If a PCP instance has one solution it has infinitely many solutions.
= PCP < GPn,~ the problem whether L(G;) N L(Go) is infinite is undecidable.
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to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
Is L(Gy) N L(G2) = 0? (GPn )

Is L(G1) N L(Gy) infinite? (GPA, o)

@ Is L(Gy) N L(Gy) context-free? (GPn cF)

@ Recall, L(Gy) N L(Gz) consists of words of the form: in, . . . i, V$VFin, ... in, With
V=1Xp ... Xp and VA = yfl . yR
@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if

L(Gy) N L(Gp) # 0.
= PCP < GPp, , the problem whether L(Gy) N L(Gz) = @ is undecidable.
@ If a PCP instance has one solution it has infinitely many solutions.
= PCP < GPn,~ the problem whether L(G;) N L(Go) is infinite is undecidable.
@ If L(G1) N L(Gz) # 0 then L(Gy) N L(Gp) is not context-free (Pumping-Lemma).
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Undecidable grammar problems (proofs)

to prove:

Given two context-free grammars Gy, Go, the following problems are undecidable:
Is L(Gy) N L(G2) = 0? (GPn )

Is L(G1) N L(Gy) infinite? (GPA, o)

@ Is L(Gy) N L(Gy) context-free? (GPn cF)

Recall, L(Gy) N L(Gz) consists of words of the form: in, .. . in, V8V, .. . in, with
V=1Xp ... Xp and VA = yfl . yR

@ Hence, the PCP instance {(x1, 1), (X2, ¥2), .- ., (X, ¥x)} has a solution if and only if
L(Gy) N L(Gp) # 0.

= PCP < GPp, , the problem whether L(Gy) N L(Gz) = @ is undecidable.

@ If a PCP instance has one solution it has infinitely many solutions.

= PCP < GPn,~ the problem whether L(G;) N L(Go) is infinite is undecidable.

@ If L(Gy) N L(Gz) # 0 then L(Gy) N L(Gz) is not context-free (Pumping-Lemma).

= PCP < GPr, cr, the problem whether L(G1) N L(Gy) is context-free is undecidable.
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Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar G, f(G) is a

context-free grammar with L(G) = L(f(G))

For a proof see Hopcroft & Ulliman 1979.

Petersen & Balogh (HHU) Decision Problems NASSLLI 2014 23/24
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Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar G, f(G) is a

context-free grammar with L(G) = L(f(G))

For a proof see Hopcroft & Ulliman 1979.

to prove:

Given two context-free grammars G, G, the following problems are undecidable:
Q@ Is L(G) C L(G')? (GPc)
@ Is L(G) = L(G")? (GP=)
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Proposition

Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar G, f(G) is a

context-free grammar with L(G) = L(f(G))

For a proof see Hopcroft & Ulliman 1979.

to prove:

Given two context-free grammars G, G, the following problems are undecidable:
Q@ Is L(G) C L(G')? (GPc)
@ Is L(G) = L(G")? (GP=)

@ Note that the grammars G; and G, are deterministic.
@ L(G)NL(Gy)=0ifand only if L(Gy) C L(G2)
= GPn ¢ < GPc, the problem whether L(G) C L(G’) is undecidable.
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Undecidable grammar problems (proofs)

Proposition

Deterministic context-free grammars are closed under complement.
There is a computable function f such that for each context-free grammar G, f(G) is a

context-free grammar with L(G) = L(f(G))

For a proof see Hopcroft & Ulliman 1979.

to prove:

Given two context-free grammars G, G, the following problems are undecidable:
@ Is L(G) C L(G')? (GPc)
@ Is L(G) = L(G')? (GP-=)

@ Note that the grammars G; and G, are deterministic.

@ L(G)NL(Gp) =0ifand only if L(G;) C L(G2)

= GPn ¢ < GPc, the problem whether L(G) C L(G’) is undecidable.
@ [(G) C L(G@)ifandonlyif L(G)UL(G') = L(G).

= the problem whether L(G) = L(G’) is undecidable.
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Given a context-free grammar G, the following problems are undecidable:
@ Is G ambiguous? (GPamp)

@ Is L(G) context-free? (GP5)
@ Is L(G) regular? (GPreg)
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Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:
@ Is G ambiguous? (GPamp)

@ Is L(G) context-free? (GP5)
@ Is L(G) regular? (GPreg)

@ Let Gy and G, be as before. Let Gz be the grammar which generates L(Gy) U L(Gy).
> The instance of the PCP problem has a solution iff there exists a word w € L(Gs) which has
two derivation trees (one from Gy and one from Gp).
= PCP < GPamp, the problem whether a context-free grammar is ambiguous is undecidable.
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Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:
@ Is G ambiguous? (GPamp)

@ Is L(G) context-free? (GP5)
@ Is L(G) regular? (GPreg)

Let Gy and G be as before. Let G3 be the grammar which generates L(G;) U L(Gy).
» The instance of the PCP problem has a solution iff there exists a word w € L(Gs) which has
two derivation trees (one from Gy and one from Gp).
= PCP < GPamp, the problem whether a context-free grammar is ambiguous is undecidable.
@ Remember, Gy and Gy are deterministic and f(Gj), f(G.) generate the complement
languages. Let G4 be the grammar which generates
L(Gy) = L(H(G1)) U L({(G2)) = L(G1) U L(Gz) = L(Gy) N L(Gz)
> The instance of the PCP problem has a solution iff L(G1) N L(Gz) = L(Ga) is not
context-free.
= GPn,cr < GPzz The problem whether the complement of a context-free language is
context-free is undecidable.
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Undecidable grammar problems (proofs)

Given a context-free grammar G, the following problems are undecidable:
@ Is G ambiguous? (GPamp)

@ Is L(G) context-free? (GP5)
@ Is L(G) regular? (GPreg)

Let Gy and G be as before. Let G3 be the grammar which generates L(G;) U L(Gy).
» The instance of the PCP problem has a solution iff there exists a word w € L(Gs) which has
two derivation trees (one from Gy and one from Gp).
= PCP < GPamp, the problem whether a context-free grammar is ambiguous is undecidable.
@ Remember, Gy and Gy are deterministic and f(Gj), f(G.) generate the complement
languages. Let G4 be the grammar which generates
L(Ga) = L(f(G1)) U L(K(Gz)) = L(Gr) UL(Gz) = L(G1) N L(Gz)
> The instance of the PCP problem has a solution iff L(G1) N L(Gz) = L(Ga) is not
context-free.
= GPn,cr < GPzz The problem whether the complement of a context-free language is
context-free is undecidable.
L(Gy) N L(G2) = 0 iff L(G4) = £*. Remember: For regular languages it is easy to check
whether L = ¥*.
= GPn 9 < GPrey The problem whether a context-free grammar generates a regular language
is undecidable.
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