Seminar: Formale Begriffsanalyse Begriffsverbände

Dozentin: Wiebke Petersen petersew@uni-duesseldorf.de SoSe 2010

4. Foliensatz

Hinweise für AP

- Die Standardleistung für eine AP ist eine Haus- bzw. Projektarbeit (Ausnahmen nur in Notfällen).
- Es bieten sich Projektarbeiten an, die die Einsatzmöglichkeiten der FBA untersuchen.
- Bitte sprechen Sie die Hausarbeitsthemen frühzeitig mit mir ab!
- Jedes Hausarbeitsthema sollte im Seminar vorgestellt werden (max. 10minütiger Vortrag):
 - Was ist das Problem?
 - Warum könnte FBA geeignet sein, dieses Problem zu lösen?
 - Welche Vorgehensweise ist geplant?
 - Zeitplan?
 - Welche Schwierigkeiten werden erwartet?

Hinweise für BN

- Auf allgemeinen Wunsch wird es keine BN-Klausur geben.
- Ein BN wird durch die regelmäßige Bearbeitung von Hausaufgaben erworben.
 - Die Hausaufgaben sind in der Regel bis zur kommenden Sitzung anzufertigen.
 - Die Hausaufgaben finden sich auf den Kursfolien.
 - Vorsicht, nur die mit Hausaufgaben überschriebenen Aufgaben sind Hausaufgaben (nicht zu verwechseln mit Übungsaufgaben).
 - Für eine AP sind die Hausaufgaben keine Pflicht, werden aber empfohlen.
- Alternative: ca. 5-6seitiges Essay.

minimales / maximales Element

Sei (M, \leq) eine (partiell) geordnete Menge. Ein Element x von M ist ein

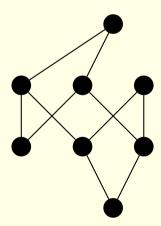
- minimales Element von M, g.d.w. es kein Element y von M gibt, für das $y \le x$ und $x \ne y$ gilt.
- **maximales Element** von M, g.d.w. es kein Element y von M gibt, für das $x \leq y$ und $x \neq y$ gilt.

Minimum / Maximum

Sei (M, \leq) eine (partiell) geordnete Menge. Ein Element x von M ist

- das **Minimum** von M, g.d.w. für jedes Element y von M gilt, daß $x \leq y$.
- das **Maximum** von M, g.d.w. für jedes Element y von M gilt, daß $y \leq x$.

Nicht jede geordnete Menge hat ein Maximum und / oder ein Minimum. Wenn eine geordnete Menge mehr als ein minimales bzw. maximales Element hat, dann hat sie kein Minimum bzw. Maximum.

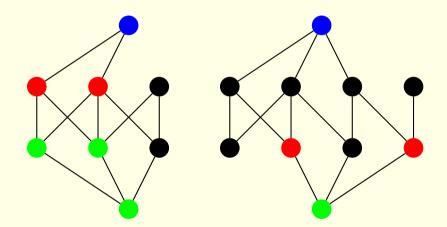


Beispiel einer geordneten Menge mit 2 minimalen und 2 maximalen Elementen, die kein Minimum und kein Maximum hat.

obere / untere Schranke

Sei (M, \leq) eine (partiell) geordnete Menge und K eine Teilmenge von M. Ein Element x von M ist

- eine **obere Schranke** von K, g.d.w. $\forall y \in K : y \leq x$;
- eine **untere Schranke** von K, g.d.w. $\forall y \in K : x \leq y$.



Die Abbildungen zeigen die Hassediagramme zweier geordneter Mengen. Die rot markierten Elementen haben die blau markierten Elemente als obere und die grün markierten als untere Schranken.

kleinste obere / größte untere Schranke

x heißt **kleinste obere Schranke** oder **Supremum** von K in M, wenn x eine obere Schranke von K ist und für jede obere Schranke $y \in M$ von K mit $x \neq y$ die Ungleichung $x \leq y$ gilt. Wir schreiben $\sup K$ oder $\bigvee K$ für das Supremum von K (lese \vee als '**join**').

x heißt **größte untere Schranke** oder **Infimum** von K in M, wenn x eine untere Schranke von K ist und für jede untere Schranke $y \in M$ von K mit $x \neq y$ die Ungleichung $y \leq x$ gilt. Wir schreiben $\inf K$ oder $\bigwedge K$ für das Infimum von K (lese \land als '**meet**').

Wir schreiben $x \vee y$ statt $\bigvee \{x,y\}$ und $x \wedge y$ statt $\bigwedge \{x,y\}$.

Die Beispiele der vorangegangenen Folie zeigen, daß es geordnete Mengen M gibt, für die nicht jede Teilmenge $K\subseteq M$ ein Supremum oder Infimum hat.

Beispiele

- Für die linear geordnete Menge (\mathbb{R}, \leq) gilt: $\sup[1, 4] = 4$ und $\inf[1, 4] = 1$.
- Für die partiell geordnete Menge $(\wp(M),\subseteq)$ mit $M=\{1,2,3,4\}$ ist das Supremum von $K=\big\{\{1,2\},\{2,4\},\{1\}\big\}$ die Vereinigung aller Elemente von K, also $\sup K=\{1,2,4\}$.
 - Das Infimum von K ist der Durchschnitt aller Elemente von K, also $\inf K = \emptyset$.

Hausaufgaben (1)

Aufgaben:

1. Zeichne ein Hasse-Diagramm zur geordneten Menge

$$M = \Big(\big\{ \{1, 2, 3, 4, 5\}, \{1, 2, 3, 5\}, \{1, 3, 4\}, \{2, 4, 5\}, \{1, 2, 3\}, \\ \{1, 3\}, \{2, 4\}, \{1, 5\}, \{1, \}, \{3\}, \{4\}, \{5\}, \emptyset \big\}, \subseteq \Big).$$

2. Wähle eine 4-elementige Teilmenge von M und bestimme ihre oberen und unteren Schranken. Hat die Teilmenge ein Supremum und ein Infimum in M?

Verbände

Definition 1. [Verbände] Eine geordnete Menge (V, \leq) ist ein **Verband**, g.d.w. zu je zwei Elementen x und y aus V auch das Supremum von x und y $(x \vee y)$ und das Infimum von x und y ($x \wedge y$) Elemente von V sind.

Definition 2. Ein Verband (V, \leq) ist ein **vollständiger Verband**, falls für alle $K \subseteq V$ gilt, daß $\bigvee K \in V$ und $\bigwedge K \in V$. Jeder vollständige Verband hat ein größtes Element $\bigvee V$, das **Einselement** $(\mathbf{1}_{V})$ genannt, und ein kleinstes Element $\bigwedge V$, das **Nullement** $(\mathbf{0}_{V})$ genannt. Die oberen Nachbarn des Nullelements nennt man die **Atome** und die unteren Nachbarn des Einselements die **Koatome** des Verbands.

Bemerkungen

- Jeder endliche Verband ist vollständig.
- Da $\bigwedge \emptyset = 1_V$ und $\bigvee \emptyset = 0_V$ gilt, gibt es keinen vollständigen Verband mit leerer Menge V.
- Die Ordnungsrelation kann aus ∧ und ∨ wiedergewonnen werden:

$$x \le y \qquad \Leftrightarrow \qquad x = x \land y \qquad \Leftrightarrow \qquad x \lor y = y$$

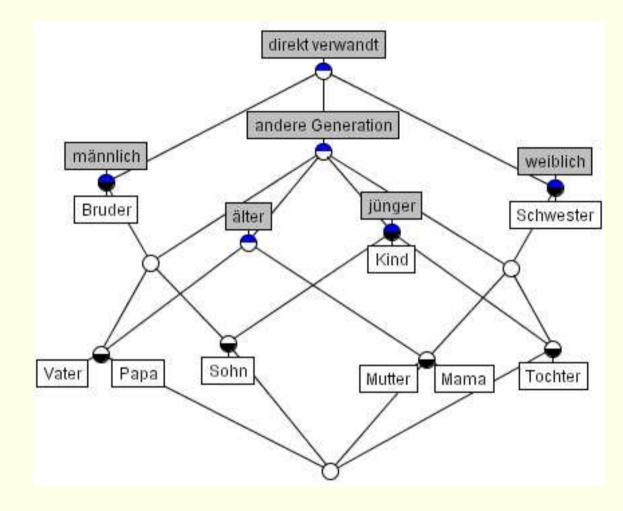
 $\qquad \lor \text{ und } \land \text{ sind assoziativ: } x \land (y \land z) = (x \land y) \land z \text{ und } x \lor (y \lor z) = (x \lor y) \lor z.$

Beispiele

- $(\wp(M),\subseteq)$ ist ein vollständiger Verband, \vee entspricht \cup und \wedge entspricht \cap .
- $([2,5], \leq)$ ist ein vollständiger Verband.
- \blacksquare (\mathbb{R}, \leq) ist ein Verband, aber nicht vollständig.
- $(\{\{1,2\},\{2,4\},\{1\}\},\subseteq)$ ist kein Verband.

Begriffsordnung

	direkt verwandt	älter	jünger	männlich	weiblich	andere Generation
Vater	×	X		X		×
Mutter	×	X			X	×
Bruder	×			X		
Schwester	×				X	
Kind	×		X			×
Sohn	×		X	X		×
Tochter	× × × × × ×		X		X	×
Papa	×	×		×		×
Mama	×	×			×	×



Definition 3. Seien (A_1, B_1) und (A_2, B_2) zwei Begriffe eines formalen Kontextes mit $A_1 \subseteq A_2$ (äquivalent: $B_2 \subseteq B_1$), dann ist (A_1, B_1) ein **Unterbegriff** von (A_2, B_2) und (A_2, B_2) ein **Oberbegriff** von (A_1, B_1) . Man schreibt $(A_1, B_1) \leq (A_2, B_2)$ und nennt die Ordnung \leq die **Begriffsordnung**.

Hauptsatz der Formalen Begriffsanalyse

Theorem 4. Für jeden formalen Kontext (G, M, I) bildet die assoziierte geordnete Menge $(\mathcal{B}(G, M, I), \leq)$ einen vollständigen Verband, der der **Begriffs-verband** des formalen Kontextes genannt wird. In dem Begriffsverband sind Infimum und Supremum wie folgt beschrieben:

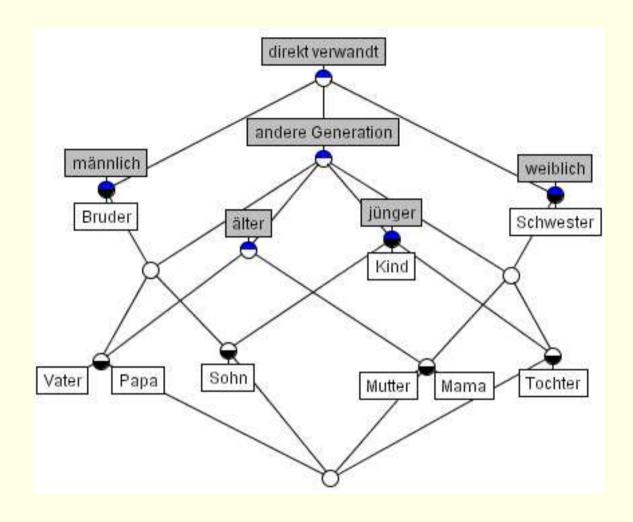
$$\bigwedge_{t \in T} (A_t, B_t) = \left(\bigcap_{t \in T} A_t, \left(\bigcup_{t \in T} B_t \right)'' \right)$$

$$\bigvee_{t \in T} (A_t, B_t) = \left(\left(\bigcup_{t \in T} A_t \right)'', \bigcap_{t \in T} B_t \right)$$

Jeder vollständige Verband ist ein Begriffsverband.

kleiner Verwandtschaftskontext

	direkt verwandt	älter	jünger	männlich	weiblich	andere Generation
Vater	×	X		X		×
Mutter	×	X			X	×
Bruder	×			X		
Schwester					X	
Kind	×		×			×
Sohn	×		X	X		×
Tochter	× × × ×		×		X	×
Papa	×	×		×		×
Mama	×	×			×	×



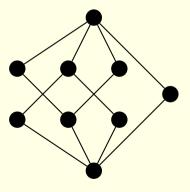
Begriffe des kleinen Verwandtschaftskontextes

	Extension									Intension						
	Vater	Mutter	Bruder	Schwester	Kind	Sohn	Tochter	Papa	Mama	direkt verwandt	älter	jünger	männlich	weiblich	andere Generation	
B1	×	×	×	×	×	×	×	×	×	×						
B2		×		×			×		×	×				×		
B3	×		×			×		×		×			×			
B4	×	×			×	×	×	×	×	×					×	
B5	×	×						×	×	×	×				×	
B6					×	×	×			×		×			×	
B7		×					×		×	×				×	×	
B8	×					×		×		×			×		×	
B9	×							×		×	×		×		×	
B10		×							×	×	×			×	×	
B11						×				×		×	×		×	
B12							×			×		×		×	×	
B13										×	×	×	×	×	×	

Hausaufgaben (2)

Aufgaben:

- 3. Untersuchen Sie den kleinen Verwandtschaftskontext:
 - (a) Nach welchem Verfahren ist der Begriffsverband beschriftet?
 - (b) Tragen Sie die Begriffsnummern aus der Begriffstabelle in das Diagramm ein.
 - (c) Was könnten die unterschiedlichen Knotenarten des Diagramms bedeuten?
- 4. (Zusatzaufgabe, fakultativ) Ermitteln Sie einen möglichst "kleinen" (kleine Menge von Gegenständen und Merkmalen, kleine Inzidenzrelation) Kontext, der folgenden vollständigen Verband als Begriffsverband hat.



Übungsaufgaben

- 1. Wie ändert sich der Begriffsverband, wenn man
 - (a) das Merkmal 'älter' wegläßt?
 - (b) den Gegenstand 'Papa' wegläßt?
 - (c) den Gegenstand 'Kind' wegläßt?
 - (d) das Merkmal 'gleiche Generation' hinzunimmt?
 - (e) den Gegenstand 'ältere Schwester' hinzunimmt?
- 2. Beweisen Sie, daß die Menge aller Begriffe eines endlichen Kontextes (ein Kontext mit endlicher Merkmal- und Gegenstandsmenge) geordnet bezüglich der Begriffsordnung einen vollständigen Verband bildet.
- 3. Entwickeln Sie ein systematisches Verfahren, um (möglichst effizient) die Menge aller Begriffe zu einem Kontext zu ermitteln.