Einführung in die Computerlinguistik – Chomskyhierarchie

Dozentin: Wiebke Petersen

14. Foliensatz

Wiederholung: Formale Grammatik

Definition

Eine formale Grammatik ist ein 4-Tupel G = (N, T, S, P) aus

- einem Alphabet von Terminalsymbolen T (häufig auch Σ)
- ullet einem Alphabet von Nichtterminalsymbolen N mit N \cap T $= \emptyset$
- einem Startsymbol $S \in N$
- einer Menge von Regeln/Produktionen $P \subseteq \{\langle \alpha, \beta \rangle \mid \alpha, \beta \in (N \cup T)^* \ und \ \alpha \notin T^* \}.$

Für eine Regel $\langle \alpha, \beta \rangle$ schreiben wir auch $\alpha \to \beta$.

 Wenn man die Form der Regeln einschränkt erhält man Teilmengen der Menge aller durch eine Grammatik erzeugten Sprachen.

- Wenn man die Form der Regeln einschränkt erhält man Teilmengen der Menge aller durch eine Grammatik erzeugten Sprachen.
- Die Chomskyhierarchie ist eine Hierarchie über die Regelbedingungen (den verschiedenen Sprachklassen entsprechen Einschränkungen über die rechten und linken Regelseiten).

- Wenn man die Form der Regeln einschränkt erhält man Teilmengen der Menge aller durch eine Grammatik erzeugten Sprachen.
- Die Chomskyhierarchie ist eine Hierarchie über die Regelbedingungen (den verschiedenen Sprachklassen entsprechen Einschränkungen über die rechten und linken Regelseiten).
- Die Chomskyhierarchie reflektiert eine spezielle Form der Komplexität, andere Kriterien sind denkbar und führen zu anderen Hierarchien.

- Wenn man die Form der Regeln einschränkt erhält man Teilmengen der Menge aller durch eine Grammatik erzeugten Sprachen.
- Die Chomskyhierarchie ist eine Hierarchie über die Regelbedingungen (den verschiedenen Sprachklassen entsprechen Einschränkungen über die rechten und linken Regelseiten).
- Die Chomskyhierarchie reflektiert eine spezielle Form der Komplexität, andere Kriterien sind denkbar und führen zu anderen Hierarchien.
- Die Sprachklassen der Chomskyhierarchie sind in der Informatik intensiv untersucht worden (Berechnungskomplexität, effektive Parser).

- Wenn man die Form der Regeln einschränkt erhält man Teilmengen der Menge aller durch eine Grammatik erzeugten Sprachen.
- Die Chomskyhierarchie ist eine Hierarchie über die Regelbedingungen (den verschiedenen Sprachklassen entsprechen Einschränkungen über die rechten und linken Regelseiten).
- Die Chomskyhierarchie reflektiert eine spezielle Form der Komplexität, andere Kriterien sind denkbar und führen zu anderen Hierarchien.
- Die Sprachklassen der Chomskyhierarchie sind in der Informatik intensiv untersucht worden (Berechnungskomplexität, effektive Parser).
- Für Linguisten ist die Chomsky Hierarchie besonders interessant, da sie die Form der Regeln zentral stellt, und somit Aussagen über Grammatikformalismen zuläßt.

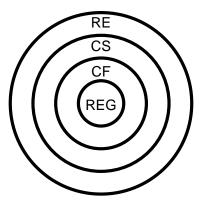
Noam Chomsky

Noam Chomsky
(* 7.12.1928, Philadelphia)
Noam Chomsky, *Three Models for the Description of Language*,
IRE Transactions on Information Theory (1956).

Chomsky-Hierarchie (grober Überblick)

allgemeine Regelsprachen	Typ 0, RE	$\alpha \to \beta$	
recursively enumerable languages			
kontextsensitive Sprachen	Typ 1, CS	$\beta A \gamma \rightarrow \beta \delta \gamma$	$a^n b^n c^n$, ww,
context-sensitive languages			a" b" c" d"
kontextfreie Sprachen	Typ 2, CF	$A \rightarrow \beta$	a"b", w ^R w
(context-free languages)			
reguläre Sprachen	Typ 3, REG	A o aB	a* b*
(regular languages)		A o a	

$$a,b\in T$$
, $A,B\in N$, $\alpha,\beta,\gamma,\delta\in (N\cup T)^*$ und $\alpha\not\in T^*$


Übung: Geben Sie eine Beispielregel für eine Grammatik jeder Sprachklasse an, die nicht Regel einer Grammatik einer schwächeren Klasse sein kann.

Chomsky-Hierarchie & Automaten

Sprache	Automat	Grammatik	Erkennung	Abhängigkeit
rekursiv aufzählbar	Turing Maschine	unbeschränkt Baa → ε	unentscheidbar	beliebig
kontext- sensitiv	linear gebunden	kontext- sensitiv γΑδ → γβδ	NP-vollständig	überkreuzt
kontext- frei	Kellerautomat (Stapel)	kontextfrei C → bABa	polynomiell	eingebettet
regulär	endlicher Automat	regulär A → bA	linear	strikt lokal

Chomskyhierarchie: Hauptsatz

 $\mathsf{REG} \subset \mathsf{CF} \subset \mathsf{CS} \subset \mathsf{RE}$

NL ⊈ CF: Shieber 1985

Nebensatzeinbettung im Schweizerdeutschen

- Jan säit das mer d'chind em Hans es huus lönd hälfe aastriiche wir die Kinder-AKK Hans-DAT das Haus-AKK ließen helfen anstreichen NP₁ NP₂ NP₃ VP₁ VP₂ VP₃ "cross serial dependencies"
- *mer d'chind de Hans es huus lönd hälfe aastriiche wir die Kinder-AKK Hans-AKK das Haus-AKK ließen helfen anstreichen

Nebensatzeinbettung im Deutschen

 weil er die Kinder dem Hans das Haus streichen helfen ließ NP₁ NP₂ NP₃ VP₃ VP₂ VP₁ "nested dependencies"

Das Schweizerdeutsche ist keine kontextfreie Sprache!

Abschlusseigenschaften formaler Sprachen

	Тур3	Typ2	Typ1	Typ0
Vereinigung	+	+	+	+
Schnittmenge	+	-	+	+
Komplement	+	-	+	-
Konkatenation	+	+	+	+
Stern von Kleene	+	+	+	+
Schnitt mit regulärer Sprache	+	+	+	+

Vokabular zur Theorie der Entscheidbarkeit

Algorithmus: Eine aus endlich vielen Schritten bestehende Verarbeitungsvorschrift, die, mechanisch angewandt zur Lösung eines Problems führt.

Entscheidbarkeit: Ein Problem ist entscheidbar, wenn ein Algorithmus existiert, der bei Eingabe einer Instantiierung des Problems nach endlich vielen Schritten angibt, ob dieses lösbar ist oder nicht.

Entscheidbarkeitsprobleme

Gegeben: Grammatiken $G = (N, \Sigma, S, P)$, $G' = (N', \Sigma, S', P')$, Wort $w \in \Sigma^*$

Wortproblem Ist w in G ableitbar?

Leerheitsproblem Erzeugt *G* eine nichtleere Sprache?

Äquivalenzproblem Erzeugen G und G' die gleichen Sprachen (L(G) = L(G'))?

Ergebnisse zu Entscheidbarkeitsproblemen

	Тур3	Typ2	Typ1	Typ0
Wortproblem	Е	Е	Е	U
Leerheitsproblem	Е	Е	U	U
Äquivalenzproblem	Е	U	U	U

E steht für entscheidbar U steht für unentscheidbar

Übung

Überlegen Sie sich, warum das Wort- und das Leerheitsproblem für reguläre Sprachen entscheidbar ist (argumentieren Sie mit endlichen Automaten).

Hausaufgabe

- ① Geben Sie zu der kontextfreien Grammatik G einen Kellerautomaten an, der die von der Grammatik erzeugte Sprache akzeptiert. Erklären Sie in Einzelschritten, wie der Automat das Wort acb verarbeitet. $G = (\{S, C\}, \{a, b, c\}, S, \{S \rightarrow aSb, S \rightarrow C, C \rightarrow cC, C \rightarrow \varepsilon\})$
- ② Arbeiten Sie das Modul Turingmaschinen von der Seite http://www.xplora.org/downloads/Knoppix/MathePrisma/Start/Module/Turing/index.htm bis einschließlich dem Abschnitt über Programme (Seite 10/17) durch.