Semantic Modeling with Frames

Rainer Osswald & Wiebke Petersen

Department of Linguistics and Information Science Heinrich-Heine-Universität Düsseldorf

ESSLLI 2018

Introductory Course

Sofia University 06, 08, – 10, 08, 2018

Part 2 Formal foundations

Topics

- Attribute-value descriptions and formulas
- Translation into predicate logic
- Formal definition of frames
- Frames as models
- Subsumption and unification
- Attribute-value constraints
- Frames versus feature structures
- Type constraints versus type hierarchy

Recap

path

Ingredients

■ Attributes (funct. relations): ACTOR, MOVER, PATH, MANNER, IN-REGION, ...

region

region

- Type symbols: locomotion, man, path, walking, region, ...
- Proper relation symbols: *part-of*
- Node labels (variables, constants): *e*, *x*, *z*

Core property

■ Every node is reachable from some labeled "base" node via attributes.

Attribute-value descriptions

Vocabulary / Signature

```
Attr attributes (= dyadic functional relation symbols)

Rel (proper) relation symbols

Type type symbols (= monadic predicates)

Nname node names ("nominals")

Nvar node variables

Nlabel node labels
```

Attribute-value descriptions

Vocabulary / Signature

Attr attributes (= dyadic functional relation symbols)

Rel (proper) relation symbols

Type type symbols (= monadic predicates)

Nvar node variables

Nlabel node labels

Primitive attribute-value descriptions (pAVDesc)

$$t \mid p: t \mid p \doteq q \mid [p_1, \dots, p_n]: r \mid p \triangleq k$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k \in \mathsf{Nlabel})$$

Semantics

Translation into first-order predicate logic

Vocabulary / Signature

Attr dyadic relation symbols (attributes)

Rel relation symbols

Type monadic predicates (type symbols)

Nname constants (node names)

Nvar variables

Important Functionality of attributes has to be enforced axiomatically!

Primitive attribute-value descriptions as predicates:

$$p: t \qquad \lambda x \exists y (p(x, y) \land t(y))$$

$$p \doteq q \qquad \lambda x \exists y (p(x, y) \land q(x, y))$$

$$[p_1, \dots, p_n]: r \qquad \lambda x \exists y_1 \dots \exists y_n (p_1(x, y_1) \land \dots \land p_n(x, y_n) \land r(y_1, \dots, y_n))$$

$$p \triangleq k \qquad \lambda x (p(x, k))$$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

$$k \cdot P : t$$

$$k \cdot P \triangleq l \cdot Q$$

$$k \mid P \mid Q \mid Q$$

$$k \mid Q \mid Q \mid Q$$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

Formal definitions (fairly standard)

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

$$k \cdot \mathbf{P} : t \qquad \qquad k \left[\mathbf{P} \left[t \right] \right] \qquad \qquad \langle k \cdot \mathbf{P}, l \cdot \mathbf{Q} \rangle : r \qquad \Diamond \qquad \qquad \begin{matrix} \mathbf{P} & \mathbf{0} \\ \mathbf{Q} & \mathbf{P} \end{matrix} \qquad \begin{matrix} k \left[\mathbf{P} \left[t \right] \right] \\ l \left[\mathbf{Q} \right] \end{matrix} \qquad \begin{matrix} k \left[\mathbf{P} \right] \right] \qquad \qquad \begin{matrix} l \left[\mathbf{Q} \right] \\ l \left[\mathbf{Q} \right] \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \right] \right] \qquad \qquad \begin{matrix} l \left[\mathbf{Q} \right] \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \right] \right] \qquad \qquad \begin{matrix} l \left[\mathbf{Q} \right] \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \right] \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left[\mathbf{Q} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} l \left$$

Formal definitions (fairly standard)

Set/universe of "nodes" V

Interpretation function $I: Attr \rightarrow [V \rightarrow V],$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

$$k \cdot \mathbf{P} : t \qquad \qquad k \cdot \mathbf{P} : t \qquad \qquad k \left[\mathbf{P} \left[t \right] \right] \qquad \qquad \langle k \cdot \mathbf{P}, l \cdot \mathbf{Q} \rangle : r \qquad \otimes \stackrel{\mathbf{P}}{\longrightarrow} \circ \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad$$

Formal definitions (fairly standard)

Set/universe of "nodes" V

 $I: \mathsf{Attr} \to [V \rightharpoonup V], \ \ \mathsf{Type} \to \wp(V),$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

Formal definitions (fairly standard)

Set/universe of "nodes" V

Interpretation function $I: Attr \rightarrow [V \rightarrow V], Type \rightarrow \wp(V),$

 $Rel \to \bigcup_n \wp(V^n),$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

$$k \cdot \mathbf{P} : t \qquad \qquad k \cdot \mathbf{P} : t \qquad \qquad k \left[\mathbf{P} \left[t \right] \right] \qquad \qquad \langle k \cdot \mathbf{P}, l \cdot \mathbf{Q} \rangle : r \qquad \otimes \stackrel{\mathbf{P}}{\longrightarrow} \circ \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \right] \qquad \qquad k \left[\mathbf{P} \left[1 \right] \qquad$$

Formal definitions (fairly standard)

Set/universe of "nodes" V

Interpretation function $I: \mathsf{Attr} \to [V \to V], \mathsf{Type} \to \wp(V),$ $\mathsf{Rel} \to \bigcup_n \wp(V^n), \mathsf{Nname} \to V$

Primitive attribute-value formulas (pAVForm)

$$k \cdot p : t \mid k \cdot p \triangleq l \cdot q \mid \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle : r$$

$$(t \in \mathsf{Type}, \ r \in \mathsf{Rel}, \ p, q, p_i \in \mathsf{Attr}^*, \ k, l, k_i \in \mathsf{Nlabel})$$

Semantics

Formal definitions (fairly standard)

Set/universe of "nodes" V

Interpretation function $I: Attr \rightarrow [V \rightarrow V], Type \rightarrow \wp(V),$

 $Rel \to \bigcup_n \wp(V^n)$, $Nname \to V$

(Partial) variable assignment $g: Nvar \rightarrow V$

Formal definitions (cont'd)

Abbreviation: $I_g(k) = v$ for $k \in \text{Nlabel}$ iff I(k) = v if $k \in \text{Nname}$ and g(k) = v if $k \in \text{Nvar}$ (g(k) defined)

Formal definitions (cont'd)

Abbreviation:
$$I_g(k) = v$$
 for $k \in \text{Nlabel}$ iff $I(k) = v$ if $k \in \text{Nname}$ and $g(k) = v$ if $k \in \text{Nvar}$ $(g(k) \text{ defined})$

$$\langle V, I, g \rangle, v \models t$$
 iff $v \in I(t)$

Formal definitions (cont'd)

Abbreviation:
$$I_g(k) = v$$
 for $k \in \text{Nlabel}$ iff $I(k) = v$ if $k \in \text{Nname}$ and $g(k) = v$ if $k \in \text{Nvar}$ $(g(k) \text{ defined})$

$$\langle V, I, g \rangle, v \models t \qquad \qquad \text{iff} \quad v \in I(t)$$

$$\langle V, I, g \rangle, v \models p : t \qquad \qquad \text{iff} \quad I(p)(v) \in I(t)$$

Formal definitions (cont'd)

```
Abbreviation: I_g(k) = v for k \in \text{Nlabel} iff I(k) = v if k \in \text{Nname} and g(k) = v if k \in \text{Nvar} (g(k) \text{ defined})
```

Formal definitions (cont'd)

```
Abbreviation: I_g(k) = v for k \in \text{Nlabel} iff I(k) = v if k \in \text{Nname} and g(k) = v if k \in \text{Nvar} (g(k) \text{ defined})
```

$$\begin{split} \langle V, I, g \rangle, v &\models t & \text{iff } v \in I(t) \\ \langle V, I, g \rangle, v &\models p : t & \text{iff } I(p)(v) \in I(t) \\ \langle V, I, g \rangle, v &\models p \doteq q & \text{iff } I(p)(v) = I(q)(v) \\ \langle V, I, g \rangle, v &\models [p_1, \dots, p_n] : r \text{ iff } \langle I(p_1)(v), \dots, I(p_n)(v) \rangle \in I(r) \end{split}$$

Formal definitions (cont'd)

```
Abbreviation: I_g(k) = v for k \in \text{Nlabel} iff I(k) = v if k \in \text{Nname} and g(k) = v if k \in \text{Nvar} (g(k) \text{ defined})
```

Formal definitions (cont'd)

Abbreviation:
$$I_g(k) = v$$
 for $k \in \text{Nlabel}$ iff $I(k) = v$ if $k \in \text{Nname}$ and $g(k) = v$ if $k \in \text{Nvar}$ $(g(k) \text{ defined})$

Satisfaction of primitive descriptions

$$\begin{split} \langle V, I, g \rangle, v &\models t & \text{iff } v \in I(t) \\ \langle V, I, g \rangle, v &\models p : t & \text{iff } I(p)(v) \in I(t) \\ \langle V, I, g \rangle, v &\models p \doteq q & \text{iff } I(p)(v) = I(q)(v) \\ \langle V, I, g \rangle, v &\models [p_1, \dots, p_n] : r \text{ iff } \langle I(p_1)(v), \dots, I(p_n)(v) \rangle \in I(r) \\ \langle V, I, g \rangle, v &\models p \triangleq k & \text{iff } I(p)(v) = I_g(k) \quad (k \in \text{Nlabel}) \end{split}$$

Satisfaction of primitive formulas

$$\langle V, I, g \rangle \models k \cdot p \colon t \qquad \qquad \text{iff } I(p)(I_g(k)) \in I(t)$$

Formal definitions (cont'd)

Abbreviation:
$$I_g(k) = v$$
 for $k \in \text{Nlabel}$ iff $I(k) = v$ if $k \in \text{Nname}$ and $g(k) = v$ if $k \in \text{Nvar}$ $(g(k) \text{ defined})$

Satisfaction of primitive descriptions

$$\begin{split} \langle V, I, g \rangle, v &\models t & \text{iff } v \in I(t) \\ \langle V, I, g \rangle, v &\models p : t & \text{iff } I(p)(v) \in I(t) \\ \langle V, I, g \rangle, v &\models p \doteq q & \text{iff } I(p)(v) = I(q)(v) \\ \langle V, I, g \rangle, v &\models [p_1, \dots, p_n] : r \text{ iff } \langle I(p_1)(v), \dots, I(p_n)(v) \rangle \in I(r) \\ \langle V, I, g \rangle, v &\models p \triangleq k & \text{iff } I(p)(v) = I_g(k) \quad (k \in \text{Nlabel}) \end{split}$$

Satisfaction of primitive formulas

Formal definitions (cont'd)

Abbreviation: $I_g(k) = v$ for $k \in \text{Nlabel}$ iff I(k) = v if $k \in \text{Nname}$ and g(k) = v if $k \in \text{Nvar}$ (g(k) defined)

Satisfaction of primitive descriptions

Satisfaction of primitive formulas

$$\begin{split} \langle V, I, g \rangle &\vDash k \cdot p \colon t & \text{iff } I(p)(I_g(k)) \in I(t) \\ \langle V, I, g \rangle &\vDash k \cdot p \triangleq l \cdot q & \text{iff } I(p)(I_g(k)) = I(q)(I_g(l)) \\ \langle V, I, g \rangle &\vDash \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle \colon r \text{ iff } \langle I(p_1)(I_g(k_1)), \dots, I_g(p_n)(I(k_n)) \rangle \in I(r) \end{split}$$

Formal definitions (cont'd)

Abbreviation: $I_g(k) = v$ for $k \in \text{Nlabel}$ iff I(k) = v if $k \in \text{Nname}$ and g(k) = v if $k \in \text{Nvar}$ (g(k) defined)

Satisfaction of primitive descriptions

Satisfaction of primitive formulas

$$\begin{split} \langle V, I, g \rangle &\vDash k \cdot p \colon t & \text{iff } I(p)(I_g(k)) \in I(t) \\ \langle V, I, g \rangle &\vDash k \cdot p \triangleq l \cdot q & \text{iff } I(p)(I_g(k)) = I(q)(I_g(l)) \\ \langle V, I, g \rangle &\vDash \langle k_1 \cdot p_1, \dots, k_n \cdot p_n \rangle \colon r \text{ iff } \langle I(p_1)(I_g(k_1)), \dots, I_g(p_n)(I(k_n)) \rangle \in I(r) \end{split}$$

Satisfaction of **Boolean combinations** as usual.

Frames defined

Frame *F* over (Attr, Type, Rel, Nname, Nvar):

 $F = \langle V, I, g \rangle$, with V finite, such that every node $v \in V$ is reachable from some labeled node $w \in V$ via an attribute path,

Frames defined

Frame *F* over (Attr, Type, Rel, Nname, Nvar):

 $F = \langle V, I, g \rangle$, with V finite, such that every node $v \in V$ is reachable from some labeled node $w \in V$ via an attribute path, i.e.,

- (i) $w = I_g(k)$ for some $k \in \text{Nlabel}$ (= Nname \cup Nvar) and
- (ii) v = I(p)(w) for some $p \in Attr^*$.

Frames defined

Frame *F* over (Attr, Type, Rel, Nname, Nvar):

 $F = \langle V, I, g \rangle$, with V finite, such that every node $v \in V$ is reachable from some labeled node $w \in V$ via an attribute path, i.e.,

- (i) $w = I_g(k)$ for some $k \in \text{Nlabel}$ (= Nname \cup Nvar) and
- (ii) $v = \mathcal{I}(p)(w)$ for some $p \in \mathsf{Attr}^*$.

locomotion NANNER PATH Walking Path P

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

F⊧

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$ $F \models e \cdot (locomotion \land ACTOR: man)$

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

 $F \models e \cdot (locomotion \land ACTOR : man)$

 $F \models e \cdot (locomotion \land ACTOR \triangleq x)$

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

 $F \models e \cdot (locomotion \land ACTOR : man)$

 $F \models e \cdot (locomotion \land ACTOR \triangleq x)$

 $F \models x \cdot man$

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

 $F \models e \cdot (locomotion \land ACTOR : man)$

 $F \models e \cdot (locomotion \land ACTOR \triangleq x)$

 $F \models x \cdot man \land z \cdot house$

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

 $F \models e \cdot (locomotion \land ACTOR : man)$

 $F \models e \cdot (locomotion \land ACTOR \triangleq x)$

 $F \models x \cdot man \land z \cdot house$

 $F \models e \cdot (ACTOR \triangleq MOVER)$

Frames as models of AV formulas

A frame $F = \langle V, I, g \rangle$ is a **model** of an AV formula ϕ iff $F \models \phi$.

Example

 $F \models e \cdot locomotion$

 $F \models e \cdot (locomotion \land ACTOR : man)$

 $F \models e \cdot (locomotion \land ACTOR \triangleq x)$

 $F \models x \cdot man \land z \cdot house$

 $F \models e \cdot (ACTOR \triangleq MOVER)$

 $F \models \langle e \cdot PATH \ ENDP, \ z \cdot IN-REGION \rangle : part-of$

Subsumption

 $F_1 = \langle V_1, I_1, g_1 \rangle$ **subsumes** $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in N$ name
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Subsumption

 $F_1 = \langle V_1, I_1, g_1 \rangle$ **subsumes** $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in N$ name
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Subsumption

 $F_1 = \langle V_1, I_1, g_1 \rangle$ **subsumes** $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in N$ name
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Subsumption

 $F_1 = \langle V_1, I_1, g_1 \rangle$ **subsumes** $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in N$ name
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Intuition

 F_1 subsumes F_2 ($F_1 \subseteq F_2$) iff F_2 is at least as informative as F_1 .

Subsumption

 $F_1 = \langle V_1, I_1, g_1 \rangle$ **subsumes** $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in N$ name
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Unification

Least upper bound $F_1 \sqcup F_2$ of F_1 and F_2 w.r.t. subsumption (if existent).

Subsumption

$$F_1 = \langle V_1, I_1, g_1 \rangle$$
 subsumes $F_2 = \langle V_2, I_2, g_2 \rangle$ ($F_1 \sqsubseteq F_2$) iff there is a (necessarily unique) **morphism** $h : F_1 \to F_2$, i.e., a function $h : V_1 \to V_2$ such that

- (i) $I_2(f)(h(v)) = h(I_1(f)(v))$, if $I_1(f)(v)$ is defined, $f \in Attr, v \in V_1$,
- (ii) $h(I_1(t)) \subseteq I_2(t)$, for $t \in \text{Type}$
- (iii) $h(I_1(r)) \subseteq I_2(r)$, for $r \in \text{Rel}$
- (iv) $h(I_1(n)) = I_2(n)$, for $n \in \text{Nname}$
- (v) $h(g_1(x)) = g_2(x)$, for $x \in Nvar$, if $g_1(x)$ is defined

Unification

Least upper bound $F_1 \sqcup F_2$ of F_1 and F_2 w.r.t. subsumption (if existent).

Theorem (Frame unification)

[≈ Hegner 1994]

The worst case time-complexity of frame unification is almost linear in the number of nodes.

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive attribute-value formulas.

Frames as minimal models of attribute-value formulas

- (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive attribute-value formulas.
- (ii) Every finite conjunction of primitive attribute-value formulas has a minimal frame model.

Frames as minimal models of attribute-value formulas

- (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive attribute-value formulas.
- (ii) Every finite conjunction of primitive attribute-value formulas has a minimal frame model.

Frames as minimal models of attribute-value formulas

- (i) Every frame is the minimal model (w.r.t. subsumption) of a finite conjunction of primitive attribute-value formulas.
- (ii) Every finite conjunction of primitive attribute-value formulas has a minimal frame model.

Example

 $e \cdot (locomotion \land manner : walking \land actor \triangleq x \land mover \doteq actor \land path : (path \land endp : region)) \land (e \cdot path endp, z \cdot in-region) : part-of \land x \cdot man$

Constraints (general format) $\forall \phi$, with $\phi \in AVDesc$

$$\langle V, I, g \rangle \models \forall \phi \text{ iff } \langle V, I, g \rangle, v \models \phi \text{ for every } v \in V$$

Notation:

$$\phi \implies \psi \quad \text{for} \quad \forall (\phi \rightarrow \psi)$$

Constraints (general format) $\forall \phi$, with $\phi \in AVDesc$

$$\langle V, \mathcal{I}, g \rangle \models \forall \phi \text{ iff } \langle V, \mathcal{I}, g \rangle, v \models \phi \text{ for every } v \in V$$

Notation:

$$\phi \Rightarrow \psi$$
 for $\forall (\phi \rightarrow \psi)$

Horn constraints:

$$\phi_1 \wedge \ldots \wedge \phi_n \implies \psi \qquad (\phi_i \in \mathsf{pAVDesc} \cup \{\top\}, \ \psi \in \mathsf{pAVDesc} \cup \{\bot\})$$

Examples

 $activity \Rightarrow event$ $causation \land activity \Rightarrow \bot$

AGENT : $\top \Rightarrow AGENT \doteq ACTOR$ $activity \Rightarrow ACTOR : \top$

 $activity \land motion \Rightarrow Actor = Mover$

Constraints (general format) $\forall \phi$, with $\phi \in AVDesc$

$$\langle V, \mathcal{I}, g \rangle \models \forall \phi \text{ iff } \langle V, \mathcal{I}, g \rangle, v \models \phi \text{ for every } v \in V$$

Notation:

$$\phi \Rightarrow \psi$$
 for $\forall (\phi \rightarrow \psi)$

Horn constraints:

$$\phi_1 \wedge \ldots \wedge \phi_n \implies \psi \qquad (\phi_i \in \mathsf{pAVDesc} \cup \{\top\}, \ \psi \in \mathsf{pAVDesc} \cup \{\bot\})$$

Examples

activity ⇒ event (every activity is an event)

 $causation \land activity \implies \bot$

AGENT : ⊤ ⇒ AGENT ≐ ACTOR

 $activity \Rightarrow ACTOR : \top$

 $activity \land motion \Rightarrow ACTOR \doteq MOVER$

Constraints (general format) $\forall \phi$, with $\phi \in AVDesc$

$$\langle V, \mathcal{I}, g \rangle \models \forall \phi \text{ iff } \langle V, \mathcal{I}, g \rangle, v \models \phi \text{ for every } v \in V$$

Notation:

$$\phi \Rightarrow \psi$$
 for $\forall (\phi \rightarrow \psi)$

Horn constraints:

$$\phi_1 \wedge \ldots \wedge \phi_n \implies \psi$$
 $(\phi_i \in \mathsf{pAVDesc} \cup \{\top\}, \ \psi \in \mathsf{pAVDesc} \cup \{\bot\})$

Examples

activity \Rightarrow event causation \land activity $\Rightarrow \bot$

(every activity is an event)(there is nothing which is both a causation and an activity)

 $AGENT : T \implies AGENT \doteq ACTOR$

 $activity \Rightarrow ACTOR : T$

 $activity \land motion \Rightarrow Actor \doteq Mover$

Constraints (general format) $\forall \phi$, with $\phi \in AVDesc$

$$\langle V, \mathcal{I}, g \rangle \models \forall \phi \text{ iff } \langle V, \mathcal{I}, g \rangle, v \models \phi \text{ for every } v \in V$$

Notation:

$$\phi \Rightarrow \psi$$
 for $\forall (\phi \rightarrow \psi)$

Horn constraints:

$$\phi_1 \wedge \ldots \wedge \phi_n \implies \psi \qquad (\phi_i \in \mathsf{pAVDesc} \cup \{\top\}, \ \psi \in \mathsf{pAVDesc} \cup \{\bot\})$$

Examples

 $activity \Rightarrow event$

 $causation \land activity \implies \bot$

AGENT : ⊤ ⇒ AGENT ≐ ACTOR

 $activity \Rightarrow ACTOR : T$

 $activity \land motion \Rightarrow ACTOR \doteq MOVER$

(every activity is an event)

(there is nothing which is both a causation and an activity)

(every agent is also an actor)

Constraints (general format)
$$\forall \phi$$
, with $\phi \in \text{AVDesc}$ $\langle V, I, g \rangle \models \forall \phi$ iff $\langle V, I, g \rangle, v \models \phi$ for every $v \in V$

Notation:

$$\phi \Rightarrow \psi$$
 for $\forall (\phi \rightarrow \psi)$

Horn constraints:

$$\phi_1 \wedge \ldots \wedge \phi_n \implies \psi \qquad (\phi_i \in \mathsf{pAVDesc} \cup \{\top\}, \ \psi \in \mathsf{pAVDesc} \cup \{\bot\})$$

$$activity \Rightarrow event$$
(every activity is an event) $causation \land activity \Rightarrow \bot$ (there is nothing which is both a causation and an activity) $AGENT : T \Rightarrow AGENT \doteq ACTOR$ (every agent is also an actor) $activity \Rightarrow ACTOR : T$ (every activity has an actor) $activity \land motion \Rightarrow ACTOR \doteq MOVER$...

Possible graphical presentation of constraints

Caveat: Reading convention required!

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

 $\forall \phi \ (\phi \in AVDesc) \leadsto k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^*$

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

$$\forall \phi \ (\phi \in AVDesc) \leadsto k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^*$$

e.g., $canine \Rightarrow animate$

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

$$\forall \phi \ (\phi \in AVDesc) \rightsquigarrow k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^*$$

e.g., canine ⇒ animate

 $\rightarrow e \cdot AGENT : canine \rightarrow e \cdot AGENT : animate,$

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

$$\forall \phi \ (\phi \in AVDesc) \rightsquigarrow k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^*$$

e.g., canine ⇒ animate

 \rightarrow $e \cdot \text{AGENT}$: $canine \rightarrow e \cdot \text{AGENT}$: animate,

 $e \cdot \mathsf{PATIENT}$: canine $\rightarrow e \cdot \mathsf{PATIENT}$: animate,

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

```
\forall \phi \ (\phi \in AVDesc) \sim k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^* e.g., canine \Rightarrow animate
```

```
\rightarrow e · AGENT : canine \rightarrow e · AGENT : animate,
e · PATIENT : canine \rightarrow e · PATIENT : animate,
e · FINAL PATIENT : canine \rightarrow e · FINAL PATIENT : animate,
etc.
```

Issue Given a frame F and a set of Horn constraints, find the least specific frame F' (w.r.t. subsumption) which is at least as specific as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

$$\forall \phi \ (\phi \in AVDesc) \leadsto k \cdot p : \phi \text{ for all } k \in Nlabel, p \in Attr^*$$

e.g., $canine \Rightarrow animate$

```
\rightarrow e · AGENT : canine → e · AGENT : animate,
e · PATIENT : canine → e · PATIENT : animate,
e · FINAL PATIENT : canine → e · FINAL PATIENT : animate,
etc.
```

Proposition Given a frame F and a finite set of Horn formulas, then there is a unique least specific frame F' extending F that satisfies the given formulas (if satisfiable at all), and F' can be constructed in almost linear time.

Theorem (Frame unification under Horn constraints) [≈ Hegner 1994]

The worst case time-complexity of frame unification under a finite set of Horn formulas is almost linear in the number of nodes.

Theorem (Frame unification under Horn constraints) [≈ Hegner 1994]

The worst case time-complexity of frame unification under a finite set of Horn formulas is almost linear in the number of nodes.

$$e\begin{bmatrix} eating \\ ACTOR & x \\ THEME & y \end{bmatrix} \sqcup u\begin{bmatrix} person \\ NAME & Adam \end{bmatrix}$$

Theorem (Frame unification under Horn constraints) [≈ Hegner 1994]

The worst case time-complexity of frame unification under a finite set of Horn formulas is almost linear in the number of nodes.

$$e\begin{bmatrix} eating \\ ACTOR & x \\ THEME & y \end{bmatrix} \sqcup u\begin{bmatrix} person \\ NAME & Adam \end{bmatrix} \sqcup x \triangleq u$$

Theorem (Frame unification under Horn constraints) [≈ Hegner 1994]

The worst case time-complexity of frame unification under a finite set of Horn formulas is almost linear in the number of nodes.

$$e\begin{bmatrix} eating \\ ACTOR & X \\ THEME & y \end{bmatrix} \sqcup u\begin{bmatrix} person \\ NAME & Adam \end{bmatrix} \sqcup x \triangleq u = e\begin{bmatrix} eating \\ ACTOR & x \\ u & NAME & Adam \end{bmatrix}$$

$$THEME & Y$$

Theorem (Frame unification under Horn constraints) [≈ Hegner 1994]

The worst case time-complexity of frame unification under a finite set of Horn formulas is almost linear in the number of nodes.

Example

$$e\begin{bmatrix} eating \\ ACTOR & X \\ THEME & y \end{bmatrix} \sqcup u\begin{bmatrix} person \\ NAME & Adam \end{bmatrix} \sqcup x \triangleq u = e\begin{bmatrix} eating \\ ACTOR & x \\ u & NAME & Adam \end{bmatrix}$$

$$THEME & y$$

Digression: A general view on semantic processing

Semantic processing as the **incremental construction** of **minimal** (**frame**) **models** (by unification under constraints) based on the input, the context, and background knowledge (lexicon, ...).

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

 \rightarrow |Nvar| = 1, Rel = \emptyset .

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

 \rightarrow |Nvar| = 1, Rel = \emptyset .

■ Typed feature structures

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

 \rightarrow |Nvar| = 1, Rel = \emptyset .

■ Typed feature structures

Nname = \emptyset

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

 \rightarrow |Nvar| = 1, Rel = \emptyset .

■ Typed feature structures

Nname = \emptyset

Untyped feature structures

[→ Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated **root** node from which each other node is reachable via an attribute path, and they have no relations.

 \rightarrow |Nvar| = 1, Rel = \emptyset .

■ Typed feature structures

Nname = \emptyset

Untyped feature structures

Type = \emptyset ; named nodes have no attributes.

Type constraints

(Horn) constraints consisting only of type symbols (and \top and \bot)

Type constraints

(Horn) constraints consisting only of type symbols (and \top and \bot)

Type hierarchy generated by type constraints

≈ single node models which satisfy all constraints, ordered by (inverse) subsumption

Type constraints

(Horn) constraints consisting only of type symbols (and \top and \bot)

Type hierarchy generated by type constraints

≈ single node models which satisfy all constraints, ordered by (inverse) subsumption

```
activity \Rightarrow event
motion \Rightarrow event
locomotion \Rightarrow activity
locomotion \Rightarrow motion
```

Type constraints

(Horn) constraints consisting only of type symbols (and \top and \bot)

Type hierarchy generated by type constraints

≈ single node models which satisfy all constraints, ordered by (inverse) subsumption

Example

 $activity \Rightarrow event$ $motion \Rightarrow event$ $locomotion \Rightarrow activity$ $locomotion \Rightarrow motion$

Summary & outlook

Summary

- Attribute-value logic as a tailored logic for specifying frames
- Frames as minimal models of attribute-value formulas
- Frame unification under constraints

Summary & outlook

Summary

- Attribute-value logic as a tailored logic for specifying frames
- Frames as minimal models of attribute-value formulas
- Frame unification under constraints

Next topic

- Combining frame semantics with Lexicalized Tree Adjoining Grammars (LTAG)
- Elementary constructions as elementary trees with semantic frames
- Linguistic applications
- Brief outlook: factorization of elementary constructions in the metagrammar.