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Part 2

Formal foundations
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Topics

Attribute-value descriptions and formulas
Translation into predicate logic

Formal definition of frames

Frames as models

Subsumption and unification
Attribute-value constraints

Frames versus feature structures

Type constraints versus type hierarchy
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Recap

Example ACTOR man

locomotion @5 h%se

MOVER
MANNER/ IN-REGION
o PATH y
ENDP part-o
(©] O

walking o ) )
path region region
Ingredients
m Attributes (funct. relations): ACTOR, MOVER, PATH, MANNER, IN-REGION, ...

m Type symbols: locomotion, man, path, walking, region, ...
m Proper relation symbols: part-of
(]

Node labels (variables, constants): e, x, z

Core property

m Every node is reachable from some labeled “base” node via attributes.
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Attribute-value descriptions

Vocabulary / Signature

Attr attributes (= dyadic functional relation symbols)
Rel (proper) relation symbols

Type  type symbols (= monadic predicates)

Nname node nar!1es( nominals”) } Nlabel node labels
Nvar  node variables
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Attribute-value descriptions

Vocabulary / Signature

Attr attributes (= dyadic functional relation symbols)
Rel (proper) relation symbols

Type  type symbols (= monadic predicates)

Nname node nar!1es( nominals”) } Nlabel node labels
Nvar  node variables

Primitive attribute-value descriptions (pAVDesc)

tlp:tlp=q|pts---spa]:ir | p2k
(t € Type, r € Rel, p,q,p; € Attr*, k € Nlabel)

Semantics
p:t oot Pt p.qQl: PO p [
[ [P,Q]:r ./;r Q@
P Q o r(@,2)
oo | o)
3 Q@ P2k o @ | [P1]
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Translation into first-order predicate logic

Vocabulary / Signature

Attr dyadic relation symbols (attributes)
Rel relation symbols

Type  monadic predicates (type symbols)
Nname constants (node names)

Nvar  variables

Important Functionality of attributes has to be enforced axiomatically!

Primitive attribute-value descriptions as predicates:

p:t AxAy(p(x, y) A t(y))

p=gq AxAy(p(x,y) A q(x,y))

[P1s--opn] i r Ay Aya(prOGya) A A pa(X, yn) Ar(yts .., yn))
ptk Ax(p(x, k))
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Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
k-p:t @—P>ot k[P[t]] (k-P,1-Q):r @—P>? «[e
@—>Zr ([a ]
k-p=l-Q ®\PAO k[P] Q r([,[2])
@/Q' ([ @]
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Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
k-p:t @—P>ot k[P[t]] (k-P,1-Q):r @—P>? «[e
@—>Zr ([a ]
k-p=l-Q ®\PAO k[P] Q r([,[2])
@/Q' ([ @]

Formal definitions (fairly standard)

Set/universe of “nodes” 1%

R. Osswald & W. Petersen Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia 6



Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-pP:t ®—>ot k[P[t]] (k-p,l-Q):ir | ®—>0 «[e
g
gy
s r((1.12
k-pzl-Q ®\P~o k[P ] @)
(D/QV I[Q ]
Formal definitions (fairly standard)
Set/universe of “nodes” 1%
Interpretation function I :Attr » [V = V],

R. Osswald & W. Petersen Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia 6



Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-t ®—>ot k[P[t]] (k-p,l-Q)ir | @—>0 | ([r ]
g
ot | A
s r((1.12
k-p2l.Q ®\P~o k[r 0] @2)
(D/QV I[Q ]
Formal definitions (fairly standard)
Set/universe of “nodes” 1%
Interpretation function I :Attr » [V = V], Type — ¢(V),
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Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-t ®—>ot k[P[t]] (k-p,l-Q)ir | @—>0 | ([r ]
g
ot | A
s r((1.12
k-p2l.Q ®\P~o k[r 0] @2)
(D/QV I[Q ]
Formal definitions (fairly standard)
Set/universe of “nodes” 1%
Interpretation function I :Attr » [V = V], Type — ¢(V),

Rel = U, p(V"),
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Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-t ®—>ot k[P[t]] (k-p,l-Q)ir | @—>0 | ([r ]
g
ot | A
s r((1.12
k-p2l.Q ®\P~o k[r 0] @2)
(D/QV I[Q ]
Formal definitions (fairly standard)
Set/universe of “nodes” 1%
Interpretation function I :Attr » [V = V], Type — ¢(V),

Rel — J, 9(V"), Nname — V
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Attribute-value formulas

Primitive attribute-value formulas (pAVForm)

k-p:t| k-pzl-q | <ki-p1,....kn-pny:r
(t € Type, r € Rel, p,q.p;j € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-t ®—>ot k[P[t]] (k-p,l-Q)ir | @—>0 | ([r ]
g
ot | A
s r((1.12
k-p2l.Q ®\P~o k[r 0] @2)
(D/QV I[Q ]
Formal definitions (fairly standard)
Set/universe of “nodes” 1%
Interpretation function I :Attr » [V = V], Type — ¢(V),

Rel — J, 9(V"), Nname — V
(Partial) variable assignment g : Nvar — V

R. Osswald & W. Petersen Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia 6



Satisfaction of AV descriptions and formulas
Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions
(V.I,8),vEL iff veI(t)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)
Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)
Satisfaction of primitive descriptions
(V.I,g),vEt iff veI(t)
(V,I,g)vEp:t iff 7(p)(v)el(t)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

<V:I,g>,V|=t lﬁ VEI(t)
(V,IT,g)hvEp:t itf 7(p)(v) e I(t)
(V.I,8),vEp=gq iff Z(p)(v) = I(q)(v)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

<V:I,g>,V|=t lﬁ VEI(t)
(V,IT,g)hvEp:t itf 7(p)(v) e I(t)
(V.I,8),vEp=gq iff Z(p)(v) = I(q)(v)

(V. I.8)vElpi,....pa] i riff (T (p)(v),....T(pn)(v)) € I(r)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

(V,I,8),vEL iff veI(t)

(V,T.8)vEp:t iff 7(p)(v)eI(t)
(V,1,8).vEp=gq iff Z(p)(v) =I(q)(v)

(V. I,8),vE[pr,....pa]:riff (Z(p1)(V),....T(pn)(v)) € I(r)
(V,T.g)vEp2k iff 7(p)(v) = Zg(k) (k € Nlabel)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

(V,I,8),vEL iff veI(t)

(V,T.8)vEp:t iff 7(p)(v)eI(t)
(V,1,8).vEp=gq iff Z(p)(v) =I(q)(v)

(V. I,8),vE[pr,....pa]:riff (Z(p1)(V),....T(pn)(v)) € I(r)
(V,T.g)vEp2k iff 7(p)(v) = Zg(k) (k € Nlabel)

Satisfaction of primitive formulas
V,I,8)kk-p:t iff T(p)(Zg(k)) € I(t)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

(V,I,8),vEL iff veI(t)

(V,T.8)vEp:t iff 7(p)(v)eI(t)
(V,1,8).vEp=gq iff Z(p)(v) =I(q)(v)

(V. I,8),vE[pr,....pa]:riff (Z(p1)(V),....T(pn)(v)) € I(r)
(V,T.g)vEp2k iff 7(p)(v) = Zg(k) (k € Nlabel)

Satisfaction of primitive formulas
V,I,8)kk-p:t iff T(p)(Zg(k)) € I(t)
(V.I.g)rk-p=1l-q iff 7(p)(Zg(k)) = 1 (q)(Zg(D))
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

(V,I,8),vEL iff veI(t)

(V,T.8)vEp:t iff 7(p)(v)eI(t)
(V,1,8).vEp=gq iff Z(p)(v) =I(q)(v)

(V. I,8),vE[pr,....pa]:riff (Z(p1)(V),....T(pn)(v)) € I(r)
(V,T.g)vEp2k iff 7(p)(v) = Zg(k) (k € Nlabel)

Satisfaction of primitive formulas

(V.T.g)ek-p:t iff T(p)(Zy(k)) € I(1)
(V.I,8)rk-p=l-q iff Z(p)(Zg(k)) = Z(q)(Zg(D)
(V. I, 8) ki - p1s s kn = pn) i riff (T (p1)(Zg(ki))s ..., Zg(pn) (L (kn))) € I (r)
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Satisfaction of AV descriptions and formulas

Formal definitions (cont’d)

Abbreviation: Z4(k) = v for k € Nlabel iff 7 (k) = v if k € Nname and
g(k) = v if k € Nvar (g(k) defined)

Satisfaction of primitive descriptions

(V,I,8),vEL iff veI(t)

(V,T.8)vEp:t iff 7(p)(v)eI(t)
(V,1,8).vEp=gq iff Z(p)(v) =I(q)(v)

(V. I,8),vE[pr,....pa]:riff (Z(p1)(V),....T(pn)(v)) € I(r)
(V,T.g)vEp2k iff 7(p)(v) = Zg(k) (k € Nlabel)

Satisfaction of primitive formulas

(V.T.g)ek-p:t iff T(p)(Zy(k)) € I(1)
(V.I,8)rk-p=l-q iff Z(p)(Zg(k)) = Z(q)(Zg(D)
(V. I, 8) ki - p1s s kn = pn) i riff (T (p1)(Zg(ki))s ..., Zg(pn) (L (kn))) € I (r)

Satisfaction of Boolean combinations as usual.
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Frames defined
Frame F over (Attr, Type, Rel, Nname, Nvar):

F=(V,I,g), with V finite, such that every node v € V is reachable
from some labeled node w € V via an attribute path,
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Frames defined

Frame F over (Attr, Type, Rel, Nname, Nvar):

F=(V,I,g), with V finite, such that every node v € V is reachable
from some labeled node w € V via an attribute path, i.e.,

(i) w = I4(k) for some k € Nlabel (= Nname U Nvar) and
(ii) v =TI (p)(w) for some p € Attr*.
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Frames defined

Frame F over (Attr, Type, Rel, Nname, Nvar):
F=(V,I,g), with V finite, such that every node v € V is reachable

from some labeled node w € V via an attribute path, i.e.,

(i) w = I4(k) for some k € Nlabel (= Nname U Nvar) and

(ii) v =TI (p)(w) for some p € Attr*.

Example
ACTOR man

locomotion /—*

©

IN-REGION

\—/Mo:/ER
MANNER/
PATH
@ ENDP
(@)

walking ;
pat

region region
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region
FE
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region

F E e- locomotion
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region

F £ e- locomotion
F £ e- (locomotion A ACTOR: man)
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region

F £ e- locomotion
F £ e- (locomotion A ACTOR: man)
F £ e- (locomotion A ACTOR £ x)

R. Osswald & W. Petersen Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia



Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
PATH
O ENDP part-of
walking @) > O 0
path region region

F £ e- locomotion

F £ e- (locomotion A ACTOR: man)
F £ e- (locomotion A ACTOR £ x)
F E x-man
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
PATH
O ENDP part-of
walking @) > O 0
path region region

F £ e- locomotion

F £ e- (locomotion A ACTOR: man)
F £ e- (locomotion A ACTOR £ x)
FE x-man A z- house
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
PATH
O ENDP part-of
walking @) > O 0
path region region

F £ e- locomotion

F £ e- (locomotion A ACTOR: man)
F £ e- (locomotion A ACTOR £ x)
FE x-man A z- house

F £ e- (ACTOR = MOVER)
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Frames as models of AV formulas

A frame F =(V,I,g) is a model of an AV formula ¢ iff FE ¢.

Example
ACTOR man
locomotion O house
MOVER @
F= MANNER
IN-REGION
o PATH of
ENDP part-o,
walking @) > o ......... 0
path region region

F £ e- locomotion

F £ e- (locomotion A ACTOR: man)

F £ e- (locomotion A ACTOR £ x)

FE x-man A z- house

F £ e- (ACTOR = MOVER)

F £ (e- PATH ENDP, Z - IN-REGION) : part-of
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Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

(i) L(f)(h(v)) = h(Z(f)(v)), if 1(f)(v) is defined, f € Attr, v € V;,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel
(iv) h(Z1(n)) = I(n), for n € Nname

)

(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined
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Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

() L(F)(A(v)) = h(Z1(f)(v)), if Z1(f)(v) is defined, f € Attr, v € Vi,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel

(iv) h(Z1(n)) = I(n), for n € Nname
(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined
Example man activity ACTOR man
locomotion ACT}' °© locomotion O
@\ ® MOVER
/ mover O / \
MANNER MANNER
PATH
(0] o
walking o
path
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Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

() L(F)(A(v)) = h(Z1(f)(v)), if Z1(f)(v) is defined, f € Attr, v € Vi,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel

(iv) h(Z1(n)) = I(n), for n € Nname
(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined
Example man activity ACTOR man
locomotion ACT}' © locomotion O
@\ ® MOVER
MoveEr = O
MANNER/ C MANNER/ \
PATH
(0] (e}
walking o)
path
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Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

(i) L(f)(h(v)) = h(Z(f)(v)), if 1(f)(v) is defined, f € Attr, v € V;,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel
(iv) h(Z1(n)) = I(n), for n € Nname

)

(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined

Intuition

Fy subsumes F, (F; C F,) iff F, is at least as informative as F;.

R. Osswald & W. Petersen Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia



Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

(i) L(f)(h(v)) = h(Z(f)(v)), if 1(f)(v) is defined, f € Attr, v € V;,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel
(iv) h(Z1(n)) = I(n), for n € Nname

)

(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined

Unification

Least upper bound F; U F, of F; and F, w.r.t. subsumption (if existent).
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Subsumption and unification

Subsumption

Fi =(V1, 11,81 ) subsumes F, = (V, I, 8 ) (F; C F) iff there is
a (necessarily unique) morphism h: F; — F,, i.e., a function
h: Vi - V; such that

() L(F)(A(v)) = h(Z1(f)(v)), if Z1(f)(v) is defined, f € Attr, v € Vi,
(i) h(Z1(t)) € Ip(t), for t € Type
(iii) h(Z1(r)) € I(r), for r € Rel
(iv) h(Z1(n)) = I(n), for n € Nname
(v) h(gi(x)) = g2(x), for x € Nvar, if g1(x) is defined
Unification
Least upper bound F; U F, of F; and F, w.r.t. subsumption (if existent).

Theorem (Frame unification) [~ Hegner 1994]
The worst case time-complexity of frame unification is almost
linear in the number of nodes.
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Subsumption and unification

Examples

activity

R. Osswald & W. Petersen

ACTOR

man motion PATH path
U — 0

Semantic Modeling with Frames | Part 2 | ESSLLI 2018 | Sofia



Subsumption and unification

Examples
activity  actor man  motion paTH _path
AR 6 g —»o0
ACTOR__» O man
activity ® /
= motion
m‘ O path
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Subsumption and unification

Examples
activity  actor man  motion paTH _path
L Lo g ———o0
ACTOR O man
activity /
=~ motion © \
PATH O path
activity ACTOR man motion MOVER animate
—® O—
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Subsumption and unification

Examples
activity  actor man  motion paTH _path
L Lo g ———o0
ACTOR O man
activity ©/
= motion
m‘ O path
activity ACTOR man motion MOVER animate
@——® O——®
activity

© w‘
man
= / ® animate
@ PATH

motion
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Frames as minimal models

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.
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Frames as minimal models

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

(i) Every finite conjunction of primitive attribute-value formulas has
a minimal frame model.
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Frames as minimal models

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

(i) Every finite conjunction of primitive attribute-value formulas has
a minimal frame model.

Example ACTOR man
locomotion house
@ MOVER @
MANNER/ IN-REGION
3 PATH v
ENDP part-o,
walking >0 ~0
path region region
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Frames as minimal models

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

(i) Every finite conjunction of primitive attribute-value formulas has
a minimal frame model.

Example

ACTOR man
locomotion house
@ MOVER @

MANNER/ IN-REGION

o PATH v
ENDP part-o,

walking >0 ~0

path region region

e- (locomotion A MANNER: walking A ACTOR £ x
A MOVER = ACTOR A PATH:(path A ENDP: region))
A {e-PATH ENDP, Z - IN-REGION) : part-of A x-man
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV

Notation:

¢ =y for ¥V —)
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV
Notation:
=y for V(g )
Horn constraints:
PN ANy DY (¢; € pAVDesc U {T}, ¥ € pAVDesc U {L})
Examples

activity = event
causation A activity = L

AGENT : T = AGENT = ACTOR
activity = ACTOR: T
activity A motion = ACTOR = MOVER
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV
Notation:
=y for V(g )
Horn constraints:
PN ANy DY (¢; € pAVDesc U {T}, ¥ € pAVDesc U {L})
Examples

activity = event (every activity is an event)
causation A activity = L

AGENT : T = AGENT = ACTOR
activity = ACTOR : T
activity A motion = ACTOR = MOVER
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV
Notation:

¢ =y for ¥V —)

Horn constraints:
PN ANy DY (¢; € pAVDesc U {T}, ¥ € pAVDesc U {L})

Examples
activity = event (every activity is an event)
causation A activity = L (there is nothing which is both

a causation and an activity)
AGENT : T = AGENT = ACTOR
activity = ACTOR: T
activity A motion = ACTOR = MOVER
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV
Notation:

¢ =y for ¥V —)

Horn constraints:
PN ANy DY (¢; € pAVDesc U {T}, ¥ € pAVDesc U {L})

Examples
activity = event (every activity is an event)
causation A activity = L (there is nothing which is both
a causation and an activity)
AGENT : T = AGENT = ACTOR (every agent is also an actor)

activity = ACTOR: T
activity A motion = ACTOR = MOVER
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Attribute-value constraints

Constraints (general format) V¢, with ¢ € AVDesc
(V,I,8YEN¢ iff (V,I,8),vE¢ foreveryveV
Notation:

¢ =y for ¥V —)

Horn constraints:
PN ANy DY (¢; € pAVDesc U {T}, ¥ € pAVDesc U {L})

Examples
activity = event (every activity is an event)
causation A activity = L (there is nothing which is both
a causation and an activity)
AGENT : T = AGENT = ACTOR (every agent is also an actor)
activity = ACTOR : T (every activity has an actor)

activity A motion = ACTOR = MOVER
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Attribute-value constraints

Possible graphical presentation of constraints

event
activity motion causation
ACTOR: T MOVER : T CAUSE : T A EFFECT: T
activity A motion translocation onset-causation extended-
ACTOR = MOVER PATH : T CAUSE : punctual-event  causation
locometion bounded-translocation
GOAL: T

bounded-locomotion

Caveat: Reading convention required!
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*

e.g., canine = animate
>
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*

e.g., canine = animate
~> e-AGENT: canine — e - AGENT : animate,
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*

e.g., canine = animate

~> e-AGENT: canine — e - AGENT : animate,
e - PATIENT : canine — e - PATIENT : animate,
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*

e.g., canine = animate
~> e-AGENT: canine — e - AGENT : animate,
e - PATIENT : canine — e - PATIENT : animate,

e - FINAL PATIENT : canine — e - FINAL PATIENT : animate,
etc.
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Attribute-value constraints

Issue Given a frame F and a set of Horn constraints, find the least
specific frame F’ (w.r.t. subsumption) which is at least as specific
as F and satisfies each of the given constraints.

Note An AV constraint corresponds to infinitely many AV formulas:

V¢ (¢ € AVDesc) ~» k- p:¢ forall k € Nlabel, p € Attr*

e.g., canine = animate
~> e-AGENT: canine — e - AGENT : animate,
e - PATIENT : canine — e - PATIENT : animate,
e - FINAL PATIENT : canine — e - FINAL PATIENT : animate,
etc.

Proposition Given a frame F and a finite set of Horn formulas, then
there is a unique least specific frame F’ extending F that satisfies the
given formulas (if satisfiable at all), and F’ can be constructed in almost
linear time.
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Unification under constraints

Theorem (Frame unification under Horn constraints) [~ Hegner 1994]
The worst case time-complexity of frame unification under a
finite set of Horn formulas is almost linear in the number of
nodes.
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Unification under constraints

Theorem (Frame unification under Horn constraints) [~ Hegner 1994]
The worst case time-complexity of frame unification under a
finite set of Horn formulas is almost linear in the number of

nodes.
Example
eating
ACTO person
e TOR X L u
NAME ‘Adam’
THEME y
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Unification under constraints

Theorem (Frame unification under Horn constraints) [~ Hegner 1994]
The worst case time-complexity of frame unification under a
finite set of Horn formulas is almost linear in the number of

nodes.
Example
eating
person .
e|(ACTOR x| U u . ) U x=u
NAME ‘Adam
THEME y
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Unification under constraints

Theorem (Frame unification under Horn constraints) [~ Hegner 1994]
The worst case time-complexity of frame unification under a
finite set of Horn formulas is almost linear in the number of

nodes.
Example
. eating
eating
ACTO person U xa « | person
elacTorR x| U u x2u = e|ACTOR
NAME ‘Adam’ UlnAME ‘Adam’
THEME y
THEME y
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Unification under constraints

Theorem (Frame unification under Horn constraints) [~ Hegner 1994]
The worst case time-complexity of frame unification under a
finite set of Horn formulas is almost linear in the number of

nodes.
Example
. eating
eating
ACTO person . « | person
elacTorR x| U u x2u = e|ACTOR
NAME ‘Adam’ UlnAME ‘Adam’
THEME y
THEME y

Digression: A general view on semantic processing

Semantic processing as the incremental construction of
minimal (frame) models (by unification under constraints)
based on the input, the context, and background knowledge
(lexicon, ...).
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other
node is reachable via an attribute path, and they have no relations.
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other
node is reachable via an attribute path, and they have no relations.
~> |Nvar| = 1, Rel = @.
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other
node is reachable via an attribute path, and they have no relations.
~> |Nvar| = 1, Rel = @.

m Typed feature structures
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other
node is reachable via an attribute path, and they have no relations.
~> |Nvar| = 1, Rel = @.

m Typed feature structures

Nhame = @
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other
node is reachable via an attribute path, and they have no relations.
~> |Nvar| = 1, Rel = @.

m Typed feature structures

Nhame = @

m Untyped feature structures
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Frames versus feature structures

[— Carpenter 1992, Rounds 1997, and many others]

Feature structures have a designated root node from which each other

node is reachable via an attribute path, and they have no relations.
~> |Nvar| = 1, Rel = @.

m Typed feature structures

Nhame = @

m Untyped feature structures

Type = @; named nodes have no attributes.
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Type constraints versus type hierarchy

Type constraints

(Horn) constraints consisting only of type symbols (and T and L)
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Type constraints versus type hierarchy
Type constraints
orn) constraints consisting only of type symbols (and T and L
H i isting only of type symbol d d

Type hierarchy generated by type constraints

~ single node models which satisfy all constraints, ordered by
(inverse) subsumption
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Type constraints versus type hierarchy

Type constraints

(Horn) constraints consisting only of type symbols (and T and L)

Type hierarchy generated by type constraints

~ single node models which satisfy all constraints, ordered by
(inverse) subsumption

Example
activity = event
motion = event
locomotion = activity
locomotion = motion
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Type constraints versus type hierarchy

Type constraints

(Horn) constraints consisting only of type symbols (and T and L)

Type hierarchy generated by type constraints

~ single node models which satisfy all constraints, ordered by
(inverse) subsumption

@
Example event
activity = event
motion = event event event
. o activity motion
locomotion = activity
locomotion = motion event
activity
motion
event
activity
motion
locomotion
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Summary & outlook

Summary
m Attribute-value logic as a tailored logic for specifying frames
m Frames as minimal models of attribute-value formulas

® Frame unification under constraints
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Summary & outlook

Summary

m Attribute-value logic as a tailored logic for specifying frames
m Frames as minimal models of attribute-value formulas

® Frame unification under constraints

Next topic

m Combining frame semantics with Lexicalized Tree Adjoining
Grammars (LTAG)

m Elementary constructions as elementary trees with semantic frames
m Linguistic applications

m Brief outlook: factorization of elementary constructions in the
metagrammatr.
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