
FG-MoL 2005:

The 10th conference on

Formal Grammar

and

The 9th Meeting on

Mathematics of Language

Edinburgh

5–7 August 2005

Organizing Committee:

Gerhard Jaeger Paola Monachesi

Gerald Penn James Rogers

Shuly Wintner

CENTER FOR THE STUDY

OF LANGUAGE

AND INFORMATION

Contents

1 What feature co-occurrence restrictions have to do

with type signatures 1

Wiebke Petersen, James Kilbury

iii

1

What feature co-occurrence

restrictions have to do with type

signatures

Wiebke Petersen, James Kilbury †

Abstract
Computational linguistics of the last quarter century has seen the devel-

opment of a hierarchical and lexicalist treatment of linguistic information.
In the course of this development, formal constraints which were stated in
GPSG in terms of feature co-occurrence restrictions came to be formulated
within HPSG in terms of type hierarchies, but the relations between these de-
scriptive devices has received little attention. Formal Concept Analysis now
provides a framework within which these relations can be made explicit.

Keywords GPSG, HPSG, feature co-occurrence restriction,

type signature, Formal Concept Analysis

1.1 Introduction

A rapid and remarkable development took place within computa-
tional linguistics in the years immediately following the introduction of
unification-based models of language, in particular Lexical Functional

Grammar (LFG) and Generalized Phrase Structure Grammar (GPSG),
which employ feature structures to represent linguistic information. By
the end of the 1980s a consensus had emerged, according to which the

†We wish to thank two anonymous reviewers for their comments on an earlier
version of this paper. The work was carried out in the project “Modelling Sub-
regularity in the Lexicon” (University of Düsseldorf, Sonderforschungsbereich 282
“Theory of the Lexicon”, funded by the Deutsche Forschungsgesellschaft).

1

FG-MoL 2005.
Organizing Committee:, Gerhard Jaeger, Paola Monachesi, Gerald Penn, James Rogers,

Shuly Wintner.
Copyright c© 2005, CSLI Publications.

2 / Wiebke Petersen, James Kilbury

lexicon, which pairs word forms with feature structures, constitutes the
main repository of information in a language. Furthermore, hierarchical
structuring had come to be viewed as an essential aspect or perhaps
even the most salient characteristic of the lexicon.

GPSG, as conceived in Gazdar and Pullum (1982) and even in Gaz-
dar et al. (1985), still largely represents the older, dichotomous view of
grammar versus lexicon. Here major aspects of linguistic structure were
encoded in syntactic rules, many of which later came to be regarded
as stating the possible complement structures of verbs, i.e. lexical in-
formation. While the question “How is a classification imposed on the
content of the lexicon by the system of features” is raised (Gazdar et al.,
1985, p. 13), the answer of GPSG does not explicitly model the hier-
archical inheritance relations inherent in lexical classifications. Rather,
these relations are captured in logical constraints on feature structures

in the form of feature co-occurrence restrictions (FCRs) and feature

specification defaults (FSDs), the latter of which are nonmonotonic.
GPSG uses FCRs to restrict the distribution of features and their

values. A pair consisting of a feature and a feature value is called
a feature specification. Whereas GPSG features are atomic symbols,
feature values are either atomic symbols or categories,1 i.e., sets of
feature specifications (Gazdar et al., 1985, p. 22). FCRs are part of
a grammatical theory and restrict the set of possible categories and
their extensions in the theory. A typical FCR is [+INV] ⊃ [+AUX,
FIN] (Gazdar et al., 1985, p. 28), which is [<INV,+>] ⊃ [<AUX,+>,
<VFORM,FIN>] when written out fully.2 The condition stated here is
that in English the feature specification <INV,+> implies <AUX,+>

and <VFORM,FIN>: if a verb occurs initially in a sentence contain-
ing a subject, then this verb must be a finite auxiliary.

From the start the lexicalist orientation was prominent in LFG
(cf. Bresnan 1982, therein Kaplan and Bresnan 1982) and reached a
peak in the radical lexicalism of Karttunen (1986), which uses the
framework of categorial grammar to shift the entirety of linguistic de-
scription to the lexicon. The move toward the lexicalist view was in-
dependent of hierarchical modelling, which emerged in other work. In
particular, Flickinger (1987) pioneered the explicit description of rela-
tions between English verb classes in terms of inheritance hierarchies.
On a separate front, de Smedt (1984) initiated the use of inheritance-
based representation formalisms to capture the structure of inflectional

1Categories of GPSG correspond to the untyped feature structures of other
unification-based formalisms.

2The feature specification <INV,+> marks sentence-initial verbs, <AUX,+>

marks auxiliary verbs, and <VFORM,FIN> specifies that the verb is finite.

Feature co-occurrence restrictions and type signatures / 3

classes. Practical advantages of hierarchical lexica quickly became ap-
parent and include the economic representation, integrity, homogeneity,
and updating of data. The grammar formalism PATR-II (cf. Shieber
et al., 1983) provides templates as an indispensable formal device for
stating inheritance relations in an inheritance hierarchy, the conse-
quences of which are clear to the authors:

But our notation does not only allow convenient abbreviations; it also
plays an important role in the linguist’s use of the formalism. [...] per-
haps most importantly, grammar writers can use the notational tools
to express generalizations they could not state in the ”pure” unification
notation of the formalism. (Shieber et al., 1983, p. 62)

Head-driven Phrase Structure Grammar (HPSG), as presented in
Pollard and Sag (1987), carries over much of GPSG but restructures
the model in terms of the hierarchical lexicalist framework and, in par-
ticular, encodes as lexical much of the information that GPSG repre-
sented with syntactic rules. The introduction of the sign as a uniform
data structure for the representation of both lexical and phrasal infor-
mation, together with the integration of all linguistic levels within the
sign, provides the last means needed in order to state all information
about a language within an inheritance hierarchy defining relations be-
tween signs. In contrast to the nonmonotonic inheritance hierarchies of
de Smedt, Flickinger, and others, which allow exceptions and defaults,
HPSG employs monotonic inheritance. The distinction will play no role
in the rest of this paper.

Crucially, HPSG adopts no obvious counterpart for the FCRs of
GPSG, although the conditional feature structures (Pollard and Sag,
1987, p. 43) of HPSG could have been employed for this purpose. In-
stead, the HPSG strategy for avoiding lexical redundancy lies in the use
of inheritance hierarchies: “Structuring the lexicon in terms of an inher-
itance hierarchy of types has made it possible to factor out information
common to many lexical entries, thereby greatly reducing lexical re-
dundancy” (Sag and Wasow, 1999, p. 202). The informational domain
consists of typed feature structures. The types serve two functions: On
the one hand they allow access to embedded feature structures appear-
ing as values of features; this permits the formulation of generalizations
about such substructures. On the other hand, the types bear appropri-
ateness conditions which restrict the set of feature structures of this
type; such statements are feature-type pairs. By ordering the types in
an inheritance hierarchy, the so-called type signature, in which appro-
priateness conditions are inherited, further redundancies are avoided.

It was clear to linguists that HPSG had replaced the FCRs of GPSG

4 / Wiebke Petersen, James Kilbury

TABLE 1 Lexemes classified with respect to their feature specifications in
Gazdar et al. (1985)

v
:+

v
:−

n
:+

n
:−

v
fo

rm
:b

se

v
fo

rm
:fi

n

v
fo

rm
:p

a
s

a
u
x
:+

a
u
x
:−

in
v
:+

in
v
:−

n
fo

rm
:n

o
rm

n
fo

rm
:i
t

v
:V

A
L

n
:V

A
L

v
fo

rm
:V

A
L

a
u
x
:V

A
L

in
v
:V

A
L

n
fo

rm
:V

A
L

p
fo

rm
:w

it
h

p
fo

rm
:V

A
L

sing × × × × × × × × × ×
sings × × × × × × × × × ×
sung × × × × × × × × × ×
can1 × × × × × × × × × ×
can2 × × × × × × × × × ×
can3 × × × × × × × × × ×
child × × × × × ×
it × × × × × ×
little × × × ×
with × × × × × ×

with inheritance hierarchies of types, but the relations between these
formal devices were misunderstood and hardly questioned. Clearly, the
devices had to be related in some way, but no formal framework was
available within which the relations could be made explicit. Gerdemann
and King (1994, 1993) present a procedural method for transforming
a type signature so that it expresses an FCR. With Formal Concept
Analysis (FCA, cf. Ganter and Wille 1999) a general framework is now
available which allows the equivalence of the devices to be explained in
a transparent and declarative fashion, which we shall do after briefly
introducing the FCA framework itself.

1.2 Basics of Formal Concept Analysis

FCA is a mathematical theory designed for data analysis. FCA starts
with the definition of a formal context K as a triple (G, M, I) consist-
ing of a set of objects G, a set of attributes M , and a binary incidence

relation I ⊆ G × M between the two sets. Table 1 shows a formal
context in the form of a cross table.3 FCA associates with each formal
context a lattice of formal concepts. A formal concept of a context is
a pair consisting of a set of objects, its extent, and a set of attributes,
its intent. The extent consists exactly of the objects in the context for
which all the attributes of the intent apply; the intent consists corre-
spondingly of all attributes of the context which the objects from the
extent have in common. In order to formally express the strong con-
nection between the extent and the intent of a formal concept given by
the binary relation I, two derivational operators are defined between

3The content of this formal context will be explained in Section 1.3.

Feature co-occurrence restrictions and type signatures / 5

FIGURE 1 The concept lattice for the context of Table 1, which can be
regarded as a type signature

the set of objects G and the attribute set M of a formal context: If
A ⊆ G is a set of objects, then the set of the common attributes of A

is A′ := {m ∈ M | ∀g ∈ A : (g, m) ∈ I}, and if, analogously, B ⊆ M is
a set of attributes, then the set of objects that have B in common is
B′ := {g ∈ G | ∀m ∈ B : (g, m) ∈ I}. A formal concept is thus a pair
(A, B) ⊆ G × M with A = B′ and B = A′. Furthermore, the defini-
tion of the derivational operators guarantees that the set of all formal
concepts of a formal context (G, M, I) equals {(A′′, A′) |A ⊆ G} and
{(B′, B′′) |B ⊆ M}.4

The subconcept-superconcept relation on the set of all formal con-
cepts of a context defines a partial order:

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2

This order relation corresponds to our intuitive notion of super- and
subconcepts. Superconcepts are more general, encompass more objects,
and are characterized by fewer attributes. The main theorem of FCA
states that the set of all formal concepts of a formal context (G, M, I)
ordered with respect to the subconcept-superconcept relation consti-
tutes a complete lattice, which is called the formal concept lattice of

4A detailed introduction to Formal Concept Analysis is given by Ganter and
Wille (1999).

6 / Wiebke Petersen, James Kilbury

(G, M, I). Figure 1 shows the concept lattice corresponding to the for-
mal context in Table 1. Formal concept lattices visualize structural
connections between the data of a flat data table. Ganter and Wille
(1998) stress:

It is our belief that the potential of Formal Concept Analysis as a
branch of Applied Mathematics is just beginning to show. A typical
task that concept lattices are useful for is to unfold given data, mak-
ing their conceptual structure visible and accessible, in order to find
patterns, regularities, exceptions, etc.

The definition of concept lattices allows an especially economical
labelling of their Hasse diagrams (see Figure 1): instead of labelling
every concept with its complete extent and intent, only the object and
attribute concepts are labelled. The object concept of an object g is
the smallest concept whose extent includes g, i.e. (g′′, g′). The attribute

concept of an attribute m is analogously the largest concept whose in-
tent includes m, i.e. (m′, m′′). In this way a concept lattice becomes
an inheritance hierarchy. Any concept of the lattice inherits all objects
which are labelled with subconcepts as its extent, and it inherits all at-
tributes with which superconcepts are labelled as its intent. Inheritance
hierarchies based on concept lattices are completely nonredundant, i.e.,
each attribute and each object appears exactly once in the hierarchy.

Besides the tabular form (as a formal context) and the hierarchi-
cal form (as a formal concept lattice) FCA provides a third device,
namely attribute implications, to represent the mutual dependencies
of the data to be analyzed. An attribute implication of a formal con-
text is an implication of the form µ → ν, where µ and ν are subsets
of the attribute set (µ is called the premise and ν the conclusion of
the implication). An attribute implication µ → ν is valid in a context
if and only if every object which has all attributes in µ also has all
attributes in ν; this is equivalent to the condition ν ⊆ µ′′. The implica-
tions can be read off directly from the concept lattice: An implication
m1 ∧m2 ∧ . . . ∧ mk → m holds exactly when the greatest lower bound
of the attribute concepts of m1, . . . , mk is a subconcept of the attribute
concept of m. A set I of attribute implications of a context K which
is complete5 and non-redundant6 is called an implication basis of the
context. Since for every implication basis of a formal context the union
of every premise and the maximal corresponding conclusion forms an
intent of one of the concepts of the context, the structure of the con-
cept lattice is determined by the set of valid attribute implications up

5Every valid attribute implication of K can be derived from the members of I.
6No real subset of I forms a complete set of attribute implications of K.

Feature co-occurrence restrictions and type signatures / 7

TABLE 2 Basis of attribute implications of the formal context in Table 1

∅ → {v : VAL, n : VAL} (1.1)

{v : −,n : −} ↔ {pform : VAL} (1.2)

{v : −,n : −} ↔ {pform : with} (1.3)

{v : −,n : +} ↔ {nform : VAL} (1.4)

{v : +,n : −} ↔ {vform : VAL} (1.5)

{v : +,n : −} ↔ {aux : VAL} (1.6)

{v : +,n : −} ↔ {inv : VAL} (1.7)

{inv : +} → {vform : fin, aux : +} (1.8)

{aux : −} → {inv : −} (1.9)

{vform : pas} → {aux : −} (1.10)

{vform : bse} → {inv : −} (1.11)

{nform : it} → {nform : VAL} (1.12)

{nform : nor} → {nform : VAL} (1.13)

{inv : −} → {inv : VAL} (1.14)

{aux : +} → {aux : VAL} (1.15)

{vform : fin} → {vform : VAL} (1.16)

{n : +,n : −} → ⊥ (1.17)

{v : +, v : −} → ⊥

...
...

{vform : bse, vform : pas} → ⊥

to isomorphism. Table 2 shows a basis of attribute implications of the
context from Table 1.7 Some abbreviations have been used in the table:
A ↔ B denotes the two implications A → B and B → A and ⊥ is the
(inconsistent) set of all attributes of the context of Table 1.

1.3 FCA relates FCRs and type signatures

The main idea for showing the convertability of FCRs and type signa-
tures is to construct a suitable formal context in order to employ the
methods of FCA. Figure 2 shows a lexical fragment consisting of 10 lex-
emes classified with respect to some of the features proposed in Gazdar
et al. (1985).8 The chosen features are exactly those which play a role

7Bases of formal contexts can be efficiently calculated with the help of the
program ConImp (http://www.mathematik.tu-darmstadt.de/ags/ag1/Software/
DOS-Programme/Welcome de.html).

8The feature vform distinguishes parts of the verb paradigm (bse, base-form;
fin, finite; pas, passive participle) and nform analogously distinguishes the special
expletive pronoun it from normal nouns (norm).

8 / Wiebke Petersen, James Kilbury

sing :

266664v : +
n : −

vform : bse
aux : −

inv : −

377775 sings :

266664v : +
n : −

vform : fin
aux : −

inv : −

377775 sung :

266664v : +
n : −

vform : pas
aux : −

inv : −

377775
can :

266664v : +
n : −

vform : fin
aux : +
inv : +

377775 can :

266664v : +
n : −

vform : fin
aux : +
inv : −

377775 can :

266664v : +
n : −

vform : bse
aux : +
inv : −

377775
child :

264v : −

n : +
nform : norm

375 it :

264v : −

n : +
nform : it

375 little :

"
v : +
n : +

#
with :

264v : −

n : −

pform : with

375
FIGURE 2 Lexical fragment classified with respect to some features of

Gazdar et al. (1985)

in the first 4 FCRs given in Gazdar et al. (1985); these FCRs regulate
the distribution of the features v, n, vform, nform, pform, inv, aux, and
their values (see Table 3). The formal context in Table 1 is formed by
taking each feature-value pair as an independent attribute of the con-
text. GPSG also allows FCRs of the form [VFORM] ⊃ [+V, −N] (see
FCR 2), which encode not only restrictions on feature-value pairs but
also on the admissibility of certain features in the first place. Because
of this, further attributes of the form feature:VAL have been added in
Table 1, where such an attribute applies to a word if there is some
value value such that feature:value is an feature specification of the
word. Feature structures with embedded structures can be represented
in a formal context by flattening them and viewing the path-value pairs
as attributes (cf. Sporleder, 2003, Petersen, 2004). We call such formal
contexts obtained from feature structures feature-structure contexts.

To illustrate the relationship between FCRs and type signatures we
will proceed as follows: First we show how a type signature can be
derived from a feature structure context, and then we do the same for
a system of FCRs. Finally, we demonstrate how a feature structure
context can be constructed from either a type signature or a set of
FCRs.

Feature co-occurrence restrictions and type signatures / 9

TABLE 3 The first 4 FCRs from Gazdar et al. (1985)

FCR 1 : [+INV] ⊃ [+AUX, FIN]

FCR 2 : [VFORM] ⊃ [+V,−N]

FCR 3 : [NFORM] ⊃ [−V,+N]

FCR 4 : [PFORM] ⊃ [−V,−N]

Figure 1 shows the concept lattice for the context in Table 1, which
can be directly interpreted as a type signature of HPSG if, first, a
unique type is assigned to each node of the lattice9 and if, second,
an additional type VAL with subtypes +, −, it, norm, with, fin, bse,
and pas is added.10 The feature labels then encode the appropriate-
ness conditions associated with each type, and the subconcept relation
corresponds to the subtype relation in the type signature. If one reads
the hierarchy in Figure 1 as a type signature one sees that it makes
extensive use of multiple inheritance. Due to the definition of formal
concepts, however, it can never be the case that a type inherits incom-
patible information from its upper neighbors.11

As noted before, type signatures fulfill two tasks: they avoid redun-
dancies by structuring the information in an inheritance hierarchy and
they restrict the set of permissible feature structures. As Gerdemann
and King (1993, 1994) note, feature structures must be well-typed and
sort-resolved in order to be total models of linguistic objects and fur-
thermore, type systems must be closed-world systems. In order to show
that our type signature successfully restricts the set of permissible fea-
ture structures, we have to demonstrate that, on the one hand, no in-
admissible structure will be sort-resolved and well-typed with respect
to the type signature and, on the other hand, every permissible struc-
ture is well-typed and sort-resolved. The former follows from the fact
that the minimal concept of a concept lattice derived from a feature-
structure context never represents an object of the context, since the
values of an attribute mutually exclude each other; hence, the extent
of the minimal concept of such a context is always empty. It follows

9The lowest node is assigned the type ⊥ for bottom and the highest gets ⊤ for
top. The type ⊥ expresses contradiction and ensures that unification never fails.

10Normally, one would add extra types boolean, vform, pform, and nform between
VAL and its subtypes in order to explicitly state the value ranges of the attributes.
For further details on the automatic construction of type signatures from formal
concept lattices see Petersen (2004).

11The principle of unique feature introduction is never violated because, by adding
attributes of the form attribute:VAL to the formal context, the features are intro-
duced on their own, unique attribute concepts.

10 / Wiebke Petersen, James Kilbury

that every atom (i.e. direct upper neighbor of the minimal concept) is
an object concept and thus represents a permissible feature structure.
The latter follows from the fact that all object concepts of the linguistic
objects of Table 1 are atoms of the lattice. This property is not a neces-
sary consequence of using a feature-structure context; it rather follows
from the principle of choosing sort-resolved feature structures as total
models of linguistic objects. This principle would be violated, e.g., if
the example data were classified by attributes like non-auxiliary verb,
auxiliary verb, and inverted auxiliary verb. In that case, the inverted
auxiliary verb can1 would belong to a subclass of the class of non-
inverted auxiliary verbs like can2. By introducing the Boolean-valued
attribute inv, the property of being non-inverted is marked explicitly
and each linguistic object is described by an atom of the concept lattice.

The hierarchy in Figure 1 encodes so much information about the
distribution of atomic values that it suffices to pair phonological forms
with types in the lexicon in order to obtain adequate feature structures.
For realistic lexica such a procedure leads to enormous type signatures
since every lexical feature structure must have its own type.12 Moreover,
it conflicts with the idea of types when they, e.g. in the case of with,
cover only a single object. On this issue Pollard and Sag (1987, p. 192)
state:

[. . .] lexical information is organized on the basis of relatively few —
perhaps several dozen — word types arranged in cross-cutting hierar-
chies which serve to classify all words on the basis of shared syntactic,
semantic, and morphological properties. By factoring out information
about words which can be predicted from their membership in types
(whose properties can be stated in a single place once and for all),
the amount of idiosyncratic information that needs to be stipulated in
individual lexical signs is dramatically reduced.

Having constructed type signatures from formal concept lattices, we
will now show how to derive FCRs from a feature-structure context as
given in Table 1. The FCRs of GPSG are nothing other than implica-
tions that are compatible with the data of Table 1. In order to restrict
the set of admissible categories sufficiently, the FCRs must reflect the
mutual dependencies between the data of the context. Hence, the data
of the context must respect the FCRs and the object concepts of the
context must be derivable from the FCRs. The latter ensures that the
FCRs license no feature structure with features which do not co-occur
in the input structures.

From what we have seen in Section 1.2 it is obvious that the set of

12Petersen (2004) presents a folding strategy to reduce the number of types.

Feature co-occurrence restrictions and type signatures / 11

attribute implications from Table 2 is already an adequate set of FCRs
for the input structures of Figure 2 if one interprets ⊥ as contradiction.
In order to explain why our automatically derived set of implications
contains so many more elements than the four given by Gazdar et al.
(1985), we will compare the two sets:

It is apparent that all four FCRs from Table 3 can be derived from
the attribute implications in the implication basis of Table 2: FCR 1
corresponds to implication 1.8; FCR 2 is contained in equivalence 1.5,
FCR 3 in equivalence 1.4, and FCR 4 in equivalence 1.2.

However, Table 2 includes further implications, some of which bear
no real information in the sense of GPSG since they either result from
the sparse input data (cf. equivalence 1.3), from the special role of
the feature value VAL (cf. implications 1.12–1.16), or from the fact
that no knowledge about the exclusivity of features is implemented in
FCA (cf. implication 1.17). Implication 1.9 follows from FCR 1 on the
condition that, first, whenever inv is specified then aux is also specified
and vice versa (equivalence 1.7) and, second, inv is restricted to the
values + and −; implication 1.11 follows analogously from FCR 1.

The implications 1.1, 1.6, and 1.7 are missing in the FCRs and more-
over, only one direction of the equivalences 1.2, 1.4, and 1.5 is stated
in the FCRs. These implications regulate when categories necessarily
must be specified with respect to certain features without saying any-
thing about the concrete feature values. A very surprising gap in the
list of FCRs is evident in implication 1.10, according to which passive
verbs are not auxiliaries. This fact cannot be derived from the FCRs in
Table 3. The GPSG grammar given in Gazdar et al. (1985) thus allows
the feature-specification bundle {[PAS], [+AUX], [−INV]}, which en-
codes a non-inverted auxiliary in passive. This demonstrates that the
automatically extracted basis of attribute implications is more explicit
than the manually formulated FCRs, which arise from linguistic in-
tuition and miss statements which probably were too obvious for the
investigators. Hence, FCA can be a powerful tool for tracking down
gaps in intellectually constructed theories.

The manually constructed FCRs of GPSG theories are not always as
easy to read off a basis of attribute implications as in the example. Each
attribute implication A → B encodes a cumulated Horn clause of the
form

∧
A →

∧
B or

∧
A → ⊥ if B′′ equals the set of all attributes. But

FCRs are not necessarily cumulated Horn clauses: some of the FCRs in
Gazdar et al. (1985), p. 246, make use of negation and disjunction. The
following consideration shows that such FCRs are implicitly encoded
in the concept lattice of a feature-structure context, too. It is a well-
known fact from propositional logics that each theory can be generated

12 / Wiebke Petersen, James Kilbury

by conditionals, so called observational statements which use only dis-
junction and conjunction, but not negation. An FCR with a disjunctive
premise can be directly transformed into a set of Horn clauses:

a ∨ b → c ⇔ (a → c) ∧ (b → c)

Hence, we can focus on the derivation of conditionals with disjunctive
conclusions from concept lattices.

Let (G, M, I) be a formal context. A theory of observational state-
ments over M is said to be complete if every conditional which is com-
patible with the data of the context is entailed by the theory; we call
such a theory a complete observational theory of the context. The in-

formation domain of such a complete observational theory, i.e. the set
of all maximal consistent subsets of M w.r.t. the theory, consists ex-
actly of the intents of the object concepts.13 These considerations open
a way to derive a complete observational theory and hence a complete
set of FCRs from a concept lattice:

Each formal concept (A, B) of the lattice which is not an object
concept corresponds to an observational statement whose premise is
the conjunction of the elements of the intent B and whose conclusion
is the disjunction of the conjunctions of its subconcept intents minus
B. Adding the corresponding statement of a concept to the theory
amounts to removing the concept intent from the informational domain
of the theory. For example, the statement corresponding to the attribute
concept of nform:val is

n : VAL ∧ v : VAL ∧ v : − ∧ n : + ∧ nform : VAL

→ nform : norm ∨ nform : it, (1.18)

which can be simplified by Table 2 to

nform : VAL → nform : norm ∨ nform : it.

This states that if an object bears the feature nform, then the latter
must be specified for the value norm or it. As a second example, we
look at the concept with the extent {can2, can3}: here the simplified
corresponding observational statement is

aux : + ∧ inv : − → vform : fin ∨ vform : bse.

Ganter and Krausse (1999) present an alternative procedure for sys-
tematically constructing a complete observational theory of a formal
context. Depending on the concrete task for which the complete theory

13The information domain of a complete Horn theory of a formal context, i.e. a
complete theory consisting only of Horn clauses, equals the set of the intents of the
formal concepts.

References / 13

of a formal context is used, it often makes sense to restrict the the-
ory class by dispensing with the disjunctive or conjunctive operators
(Osswald and Petersen, 2002, 2003).

It remains to show how feature structure contexts can be derived
either from a type signature or from FCRs. Given a type signature, the
adequate feature structure context can be directly constructed from the
set of totally well-typed and sort-resolved feature structures. A detailed
description of the construction method (even for type signatures with
co-references) is given in Petersen (2004, 2005). Given a set of FCRs, the
corresponding formal context is equivalent to the information domain
of the FCRs (see Osswald and Petersen, 2003).

1.4 Conclusion

We have seen that FCA provides three different ways to display data:
in tabular form, as a hierarchy, and as a set of implications. None of
the three reduce the structure of the given data, and that is why it is
possible to switch from one representation to another without loosing
information. Hence, FCA is superior to many alternative approaches to
induction inasmuch as it is neutral with respect to the analyzed data
and describes them completely.14 The relations between formal contexts
and the corresponding concept lattices is absolutely transparent since
there is exactly one of the latter for each context.

FCA allows us to capture the relationship between FCRs and type
signatures explicitly. The prerequisite for this is the construction of a
suitable feature-structure context.

It is remarkable that FCA has not yet been adopted as a standard
tool in linguistics. Until now only a few linguists are employing FCA
(for an overview see Priss, 2003); most of them explore the utility of
FCA in lexical semantics and wordnets (e.g. Janssen, 2002). Our work
shows that FCA can play an important methodological role for linguists
in that it helps them to discover generalizations missed with intuitive
procedures and because it facilitates a better understanding of the re-
lationships between different formal theories. We hope that FCA will
soon come to take on a more important role in linguistics.

References

Bresnan, Joan. 1982. The Mental Representation of Grammatical Relations.

14Ganter and Wille (1998) on the disadvantages of FCA: “Nevertheless it may
be exponential in size, compared to the formal context. Complexity therefore is, of
course, a problem, even though there are efficient algorithms and advanced program
systems. A formal context of moderate size may have more concepts than one would
like to see individually.”

14 / Wiebke Petersen, James Kilbury

Cambridge, MA: The MIT Press.

de Smedt, Koenraad. 1984. Using object-oriented knowledge representation
techniques in morphology and syntax programming. In Proceedings of the
European Conference on Artificial Intelligence 1984 , pages 181–184.

Flickinger, Dan. 1987. Lexical Rules in the Hierarchical Lexicon. Ph.D. thesis,
Stanford University.

Ganter, Bernhard and R. Krausse. 1999. Pseudo models and propositional
horn inference. Tech. rep., MATH-AL-15-1999, Technische Universität
Dresden, Germany.

Ganter, Bernhard and Rudolf Wille. 1998. Applied lattice theory: Formal
concept analysis. In G. Grätzer, ed., General Lattice Theory , pages 591–
605. Basel: Birkhäuser Verlag.

Ganter, Bernhard and Rudolf Wille. 1999. Formal Concept Analysis. Math-
ematical Foundations. Berlin: Springer.

Gazdar, Gerald, Ewan Klein, Geoff Pullum, and Ivan Sag. 1985. Generalized
Phrase Structure Grammar . Oxford: Blackwell.

Gazdar, Gerald and Geoffrey K. Pullum. 1982. Generalized phrase structure
grammar: a theoretical synopsis. Bloomington, Indiana: Indiana University
Linguistics Club.

Gerdemann, Dale and Paul John King. 1993. Typed feature structures for
expressing and computationally implementing feature cooccurence restric-
tions. In Proceedings of 4. Fachtagung der Sektion Computerlinguistik der
Deutschen Gesellschaft für Sprachwissenschaft, pages 33–39.

Gerdemann, Dale and Paul John King. 1994. The Correct and Efficient Im-
plementation of Appropriateness Specifications for Typed Feature Struc-
tures. In Proceedings of the 15th Conference on Computational Linguistics
(COLING-94), pages 956–960. Kyoto, Japan.

Janssen, Maarten. 2002. SIMuLLDA – a Multilingual Lexical Database Ap-
plication using a Structural Interlingua. Ph.D. thesis, Universiteit Utrecht.

Kaplan, Ronald M. and Joan Bresnan. 1982. Introduction: grammars as
mental representations of language. In Bresnan (1982), pages xvii–lii.

Karttunen, Lauri. 1986. Radical lexicalism. Tech. Rep. CSLI-86-68, CSLI,
Stanford. Reprinted in M. Baltin and A. Koch, eds., Alternative Concep-
tions of Phrase Structure, pages 43–65. Chicago: CUP. 1989.

Osswald, Rainer and Wiebke Petersen. 2002. Induction of classifications
from linguistic data. In Proceedings of the ECAI-Workshop on Advances
in Formal Concept Analysis for Knowledge Discovery in Databases. Lyon.

References / 15

Osswald, Rainer and Wiebke Petersen. 2003. A logical approach to data-
driven classification. Lecture Notes in Computer Science 2821:267–281.

Petersen, Wiebke. 2004. Automatic induction of type signatures. Unpub-
lished manuscript.

Petersen, Wiebke. 2005. Induktion von Vererbungshierarchien mit Mitteln
der formalen Begriffsanalyse. Ph.D. thesis, Heinrich-Heine-Universtität
Düsseldorf. (in progress).

Pollard, Carl and Ivan A. Sag. 1987. Information-Based Syntax and Seman-
tics. Stanford, CA: CSLI Lecture Notes.

Priss, Uta. 2003. Linguistic applications of formal concept analysis. In Pro-
ceedings of ICFCA 2003 . (to appear).

Sag, Ivan and Thomas A. Wasow. 1999. Syntactic Theory: A Formal Intro-
duction. Stanford, CA: CSLI.

Shieber, Stuart, Hans Uszkoreit, Fernando Pereira, Jane Robinson, and
Mabry Tyson. 1983. The formalism and implementation of PATR-II. In
B. J. Grosz and M. Stickel, eds., Research on Interactive Acquisition and
Use of Knowledge, techreport 4, pages 39–79. Menlo Park, CA: SRI Inter-
national. Final report for SRI Project 1894.

Sporleder, Caroline. 2003. Discovering Lexical Generalisations. A Supervised
Machine Learning Approach to Inheritance Hierarchy Construction. Ph.D.
thesis, Institute for Communicationg and Collaborative Systems. School
of Informatics. University of Edinburgh.

