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1. Introduction

Immediate Dominance/Linear Precedence (ID/LP) Grammar is a formalism that has
recently been developed within the framework of Generalized Phrase Structure Grammar
(GPSG) as presented by Gazdar/Pullum (1982). The carefully described formal
properties and the restricted power of GPSG have made it a focal point of interest
in the parsing of natural language. Of the various devices introduced in GPSG only
the ID/LP formalism will be discussed in this paper. [1]

The basic idea of the ID/LP formalism 1is straightforward. A context-free phrase-
structure rule A —> &, where A is a unonterminal symbol and & is a string of
nonterminal and terminal symbols, contains information of two kinds: first, the
members of & are identified as successors of A, and second, the linear order of the
members of ® 1is specified. An ID/LP grammar states this information separately in
immediate dominance and linear precedence rules, respectively, but it retains the
power of a context-free phrase-structure (i.e. type 2) grammar. The linguistic
motivation for ID/LP grammar arises from its capacity to express generalizations
about word order that are not statable with context-free rules. It offers solutions
to problems involving so-called free word order, where the variable order of
constitvents is not reflected in the semantic representation of the corresponding
phrase (cf Uszkoreit 1983).

The algorithm of Earley (1970) for parsing context-free (type 2) languages
combines the techniques and advantages of top—-down and bottom~up parsing and
constitutes the most efficient practical parsing algorithm known ([2] for this
language class. Shieber (1984) adapts Earley s algorithm to the ID/LP formalism and

retains its essential parsing strategy.

[1] My thanks go to Thomas Christaller, Roger Evans, Gerald Gazdar, Christopher
Habel, Camilla Schwind, Hans Uszkoreit, Bernhard Zimmermann, and two anonymous
referees for comments related to this paper. Kilbury (1984a) contains an
extended discussion of the ideas presented here, while Kilbury (1984b) describes
a system which uses the modified Earley-Shieber parser.

[2] The algorithm of Valiant (1975) is slightly more efficient than Earley s under
worst—case conditions but does not appear to be practical for parsing natural
languages.
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The objective of this paper is to present a genuine modification of the Earley
algorithm. Although the version given here is adjusted to the ID/LP formalism, the
essential wmodification involves the so—called predictor and applies equally to
Earley’s algorithm 4itself; it promises to make the algorithm more efficient for
parsing with large grammars (see below). To facilitate comparison, this presentation
closely follows that of Shieber (1984) and Aho/Ullman (1972). The algorithm is kept
as free as possible of complications in order to highlight its structure and the
essential modification. Finally, an implementation of the algorithm in PROLOG is

given.

2. ID/LP Grammars

For an ID/LP grammar G = <N, T, ID, LP, S>

N is a finite set of nonterminal symbols,

- T is a finite set of (pre)terminal symbols,

ID is a finite set of numbered immediate dominance rules,
-~ LP is a finite set of linear precedence rules, and
~ S is a designated start (root) symbol in N.

To simplify this presentation, no distinction 1s made between terminal and
preterminal symbols. In grammars of natural languages the latter are understood as
nonterminal symbols that are directly expanded to a terminal symbol (i.e. as lexical
categories).

An ID rule is a triple <k, A, &> with an integer k (the rule number), A € N, and
xe? (NUT)

the special GPSG notation where & = {a,, ... , a_} we write
1 n

N (i.e., ®x is a nonempty set of terminal and nonterminal symbols). In

k: A —> a;, ... > 2,
where the integer and colon may be omitted so that the numbering is specified
implicitly by the order of presentation.

LP 1is a transitive, asymmetric, and irreflexive relation {<a, b>} C
(NVUT) X (NWVT). In GPSG notation we write a < b < ... < f where {<a, b>,
b, «..>, <o, <uvoy, £} Q LP. The relation defines a partial ordering over the
direct successors of a node.

We also define a b <== -~ (b < a) and extend the relations to sets and
strings: 1f & is the set {b, c, ..., £} or the string bc...f, then a < & iff
a<baa<caAa... Aa<f. We stipulate ~(f <b) and thus b § 4.

The language L(G) generated by an IDLPG is defined using the relation £ and the
following definitions (cf Shieber 1984:139). For &« = 8 ...y with a; e (NvT)
for all'l1 {i<n

(1) LP-acceptable(&) iff a S aj for all 1 < i S. ignm,

i
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(2) permute(o) = {Pl card(a) = n and B= by +ee b
withb; € @ for all 1 {i ¢ n 1,
(3) expand(«) = {@|p & permute(«) and LP-acceptable(p)}.
The remaining definitions parallel standard usage:

(4) w, —==> w, (w, directly derives w,) 1ff
1 2 1 2
v; & (NUT)*, w; =xBf, w, = &y, <k, B, f°> € ID, and @ & expand(f”);
(5) %5 is the reflexive and transitive closure of ==-=> ;

(6) L(G) = {wl wé& T* and § 2> w }.

3. The algorithm for recognition and parsing

We take the following as given:
(1) an ID/LP grammar G without
a) deletion (i.e., rules of the form A —> € are not allowed) or
b) identical recursion such that for some A, B & N, A 2> B and B %> A;
(2) a "first" relation F = {<B, k>}, where B e (NUT), k is an integer,
<k, A, {B} v B> @ ID for some A and P, BE& P, and B ﬁ (i.e., LP allows B to
occur as the left-most successor of A); [3]

(3) a string of terminal symbols w = a) ... a over T*.

The algorithm proceeds by the construction of a sequence of item lists Il, ooy
1 where each item in I, is a quadruple (4, «, B, k] such that
- & is a string consisting of successors of A in the order in which they were
identified,
- & is the set whose members form &,
- B is the set of successors of A that remain to be identified,
~<n, A, x’Up>eIDandx" AP =42,

k (with k i) is a "pack pointer” identifying the item list Ik in which the

recognition of the production <n, A, X" U ﬂ) was begun.
An item [A, &, ﬁ, k] corresponds to an item [A - u.p, k] in the notation of
Aho/Ullman (1972:320ff) for Earley s algorithm.

{3] The constraint B ¢ § here and below follows from the assumption that the
successors of a node constitute a set, i.e., a node cannot have identical
successors. The grammar definition and algorithm can easily be modified to cope
with identical successors (cf Shieber 1984:143), but the constraint 1is
reasonable for linguistic grammars in which nonterminal symbols bear parameters
for features, semantic representations, or derivation trees, since the
parametrized successors of a node will be distinct.
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To coanstruct item lists Il’ e In build Ii given a, (L <1 s n) as follows:
(1) scanner:
If 1 > 1 then for each item [A, &, {a} UP, k] e I
and a € P, add the item [A, xXa, B, k] to I;.
(2) predictor for terminal symbols:
For all <a, k> € F such that a = a
item [A, a, p, (i-1)] to Ii'
After (1) and (2) repeat (3) and (4) until no new items can be added to I

j-1 Such that a =a., a < B,

;o <k, A, {afuP> € ID, and a & B, add the
4
(3) completer:
For all [B, v, #, jl e I, and for all [A, e, {8} up, kKl & Ij such that B S B
and B ¢ B, add the item [A, «B, B, k] to I,.
(4) predictor for nonterminal symbols:
For all [B, y, #, j] € I, and for all <B, k> € F such that <k, A, {B} ufB>eId
and B @ B, add the item [A, B, p, il to L.

A string w 1s recognized iff there exists at least one item [S,«x, #, O] e I,
where S is the start symbol.

With slight modification the algorithm can be used for parsing. Let each
A € (N UT) bear a parameter for its syntactic derivation tree, constant for
terminal symbols and variable for nonterminals. In an item [A(x), &, &, k] the
parameter x of A 1s instantiated 1iff the parameter of each symbol in & is
instantiated. If x is instaatiated in some [S(x), &, #, O] € In for w, then it is a
derivation tree for w. If w is syntactically ambiguous to the degree k, then there
are k distinct instantiations of x in k distinct items in In. [4] The same
extension from recognition to parsing can be made with the Earley and Earley-Shieber
algorithms.

The algorithm has been stated in this form in order to facilitate comparison with
the presentations in Shieber(1984:141) and Aho/Ullman (1972:321); note the identity
of step (1) with their step (4) and step (3) with their step (5). The principal
modification lies in the predictor of their steps (1), (3), and (6). The predictor
of Earley s algorithm searches the entire grammar for potentially applicable
productions before each input symbol is read, while the predictor here uses the
relation F to introduce items after a terminal or nonterminal symbol has been
identified. The algorithm here thus amounts to a combination of Earley s algorithm
with a left—corner parser (cf Ross 1982) made more efficient through the use of the
relation F. [5]

[4] Alternatively, items can be augmented with a fifth term in which the derivation
tree 1s constructed.

[5] The variant of Earley” s algorithm presented in Pulman (1983:118) also
incorporates a left-corner technique (although without a first relation) and
occupies a position between Earley and the algorithm here, whose predictor
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Earley”s algorithm is costly precisely because it must anticipate each possible
following phrase and (pre)terminal symbol throughout the analysis. For a natural
language the number of possibilities can be enormous; consider e.g. the variety of
constituents with which an English or German sentence may begin. The modified
version first identifies a constituent and then -- rather than searching the entire
grammar as in a normal left-cormer parser —-- uses the relation F to find exactly
those productions by which the identified constituent may be introduced as left-most
successor. An increase in practical efficiency is thus achieved in comparison both
with the Earley algorithm and the left-corner parser. A formal analysis of the
efficiency would also depend crucially on properties of the particular grammar.

The Earley-Shieber algorithm is more general, however, since it accepts grammars
with deletion and identical recursion; these restrictions are linguistically
motivated but cannot be discussed here.

The modified algorithm may be stated more elegantly by generalizing the predictor

for terminal and nonterminal symbols as follows:

eae @ 1

program PARSE a; n

begin
for 1 := 1 to n do
begin
enter item [a,, a;, g, (i-1)] in L
CLOSURE for item [a;, ay, &, (i-1)] in step i
end

end;

procedure CLOSURE for item [B, 7, @, jl in step i:
begin

COMPLETE for item [B, v, #, j] in step 1;

PREDICT for item [B, 9, &, j] in step i

end;

procedure COMPLETE for item (B, 7, #, jl 1ia step i:

begin

£ 1 > 1 then for each [A, &, {B} U B, k] & I such that B B and B & P
begin
enter item [A, &B, ﬂ, k] in Ii;
1f P =4 then CLOSURE for item [A, B, f, k] in step i

introduces fewer superfluous items than that of Pulman. His suggestions for
further improvements of the algorithm (122ff) are misleading, however, since
they amount to a radical restriction of the class of accepted grammars.
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end

end;

procedure PREDICT for item [B, 7y, #, j] in step 1i:
begin
for each <B, k> € F where <k, A, p> € ID do

begin

enter item [A, B, P S {B}, j] dn I

i;
if PN{B} = @ then CLOSURE for item [A, B, B, i] in step i
end
end.

The termination of PARSE is established in two steps: (1) In COMPLETE, A € N
since A is in an item entered by CLOSURE. Therefore X # # and /¢/ > 1, so k < (j-1),
i.e., in each recursive cycle j is reduced by at least 1 since the new value of j is
the old value of k. Since k > O, COMPLETE terminates ia at most j steps. (2) By
assumption, G has no identical recursion (see above). Since N and ID are finite,
PREDICT terminates after a finite number of items have been added to Ii:

[N;, B, #, il

Ny, N, &, il

(Npays pogs £ 31

N, Moo B 30,
where N, = S and/or B# f#.

4. Implementation in PROLOG
4.1 The modified Earley-Shieber algorithm

The algorithm has been implemented in Waterloo PROLOG, Version l.4, and runs on
an NAS AS/7031 (IBM 370) with IBM VM/SP operating system.

Two built-in predicates deserve comment. The predicate addax adds an argument
having the form of an axiom to the set of axioms in the active workspace. The
predicate axn is used here with the format

axn(<name>, <nargs>, <axiom>, <index>)
to unify <axiom> with an axiom from the database that has the predicate name <name>
and the number of arguments <{nargs>; if <axiom> 1is the nth such axiom, then <index>

is the integer n.
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Although they are formally defined as quadruples above, the items are represented
with 5-place predicates whose first argument is the number of the corresponding item
list. Input and output predicates have been omitted from the listing. Note that the
string abc and the set {a, b, c} are both implemented as the PROLOG list a.b.c.nil
here. Since the program closely parallels the final version of the algorithm given

above, no further documentation is provided.

parse(*inputlist) <-
parsel(l, *inputlist) &
output.

parselz*i, nilk.

parsel(*i, *a.*rest) <-

diff(*1, 1, *h) &

addax( item(*i, *a, *a.nil, nil, *h) ) &

clo gre(*i, item(*i, *a, *a.nil, nil, *h) ) &
sum(*1, 1, *j) &

parsel(*j, *rest).

closure(*i, *item) <-
comglete *{, *nl, *item) &
predict(*i, *n2, *item).

completeil, *n, *item).
complete(*i, *n, *item) <-
scan(*1i, *n, *item) &
sum(*n, 1 *n
com 1ete$*i, m, *item).
complete(*i, *n, *item).

scan(*i, *n, itgm(*list& *b* *ggmma, ni%, *4) )* ; *n)
xn(item item(*j alpha theta k n) &
7* gth item’in 1ir(stJj x7 L ’ ’
complete item(*i, *b, item(*j, *a, *alpha, *theta, *k) ).

complete item(*i, *b* item(*list* *a, *alpha, *theta, *k) ) <-
test daughters(*theta, *b, *beta) &
agpeﬁﬂ(*alpha, *b.nil, *chi) &
addax( item(*1, *a, *chi, *beta, *k) 2 &
completed& item(*1i, *a *chi, *beta, *k) ).
complete item(*i, *b, %¥{rem).

predict(*i, *n, *item) <-
predict item(*i, *n, *item) &
sun(*n,~1, *m) &
predict(*i, *m, *item).
predict(*i, *n, *item).

predict item(*i, *n, item(*1list, *b, *gamma, nil, *j) ) <-
axfi(f, 2, £(*, *k), *n) &
rule(*k, *a, *theta) &
minusé*theta *bh, *pbeta) &
addax( item(*1i, *a, *b.nil, *beta, *3) .8
completed( item(*1, *a, *b.nil, *beta, *j) ).

completed( item(*i, *a, *chi, nil, *k) ) <~
closure(*1i, item(*i, *a, *chi, nil, *k) ).
completed(*itemj.

minusé*b.*delta, *b, *delta).
minus(*head.*tail, *b, *head.*delta) <~ minus(*tail, *b, *delta).

test daughters(*b.*beta, *b, *beta) <- can precede(*b, *beta).
test—daughters(*head.*tail, *b *head.*betﬁ? <~
—can precede(* , *head.nil} &
tesf;ﬁaughters(*tail, *b, *beta).

can precedei*b, nil).
canprecede(*>, *head.*tail) <-
T lp(*head, *b) &
/& fail.
can_precede(*b, *head.*tail) <- can_precede(*b, *tail).
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4.2 Test grammar

The following grammar, presented in GPSG notation, has been used for testing:

/* 1D rules LP rules */
l: 8 =--> np, vp, per. np < vp € per.

2: np —-> pn.

3: np --> det, n. det < n.

4: vp -=> vp, adv.

5: vp =--> v, np. v < np.

6: vp ==> v.

A transducer has been Implemented in PROLOG that translates the source grammar

given above into the following ob ject grammar that serves as input for the parser:

rule(l, s, np.vp.ger.nil). /* 1D rules */
rule(2, np, pn.nil).

rule(3, np, et.n.nili.

rule(4, vp, vp.adv.nil).

rule(5, vp, v.ng.nil).

rule(6, , v.nil)

v .

lp(np, ng. /* LP rules */

1p(vp, per).

lp(det, n).

SBSrt(a]) /% start symbol */

start(s). start symbo

f(np, é . [/* first relation */
n, .

f(det, 3).

£ vg, 42.

f(adv, 4).

£f(v, 5).

f(v, 6).

4.3 Test string and derivation trees

The string w = det.n.adv.v.det.n.adv.per.nil (corresponding to an English

sentence like The girl smugly wrote a program today. ) has been used for testing.

It is syntactically ambiguous and has two derivation trees corresponding to the

first expansion of vp with left or right recursion in rule 4:

]
/'\
ap vp per up v per
déz\\n v/,\;Hv déi\\h aﬁCE\Vp
B/K S
adv vp vp adv
v /}g\ 5/\Rb
det n déf\\h

(left recursion) (right recursion)
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4.4 Test run

Given the test string and test grammar as input, the program of section 4.1

produces the following list of items. To their right the numbers of the source itenms

and rules with which they are derived have been added.

1 item(l, det, det.nil, nil, O0) -

2 item(l, np, det.nil, n.nil, 0) 1&r,
3 item(2, n, n.nil, nil, 1) -

4 item(2, np, det.n.nil, nil, 0) 3

5 item(2, s, np.nil, vp.per.nil, 0) 4 & T
6 item(3, adv, adv.nil, nil, 2) -

7 item(3, vp, adv.nil, vp.nil, 2) 6 & T,
8 item(4, v, v.nil, nil, 3) -

9 item(4, vp, v.nil, np.nil, 3) 8 & Ty
10 item(4, vp, v.nil, nil, 3) 8 & ry
i1 item(4, vp, adv.vp.nil, nil, 2) 10 & 7
12 item(4, s, np.vp.nil, per.nil, 0) 11 &5
13 item(4, vp, vp.nil, adv.nil, 2) 11 &,
14 item(4, vp, vp.nil, adv.nil, 3) 10 & ry
15 item(5, det, det.nil, nil, 4) -

16 item(5, np, det.nil, n.nil, &) 15 & ry
17 item(6, n, n.nil, nil, 5) -

18 item(6, np, det.n.nil, nil, 4) 17 & 16
19 item(6, vp, v.np.nil, nil, 3) 18 & 9
20 item(6, vp, adv.vp.nil, nil, 2) 19 & 7
21 itewm(6, s, np.vp.nil, per.nil, 0) 20 & 5
22 item(6, vp, vp.nil, adv.nil, 2) 20 & T,
23 item(6, vp, vp.nil, adv.nil, 3) 19 & T,
24 item(6, s, np.nil, vp.per.nil, 4) 18 & ry
25 jtem(7, adv, adv.nil, nil, 6) -

26 item(7, vp, vp.adv.nil, nil, 2) 25 & 22
27 item(7, s, np.vp.nil, per.nil, 0) 26 & 5
28 item(7, vp, vp.nil, adv.nil, 2) 26 & r,
29 item(7, vp, vp.adv.nil, nil, 3) 25 & 23
30 item(7, vp, adv.vp.nil, nil, 2) 29 &7
31 item(7, s, np.vp.nil, per.nil, 0O) 30 & 5
32 item(7, vp, vp.nil, adv.nil, 2) 30 & LA
33 iten(7, vp, vp.nil, adv.nil, 3) 29 &1y
34 item(7, vp, adv.nil, vp.nil, 6) 25 &1y
35 item(8, per, per.nil, nil, 7) -
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36 item(8, s, np.vp.per.nil, nil, 0) 35 & 27 *** recognized #***%
37 iten(8, s, np.vp.per.nil, nil, 0) 35 & 31 *** recognized *%*
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