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Abstract

We present a parser for probabilistic Linear
Context-Free Rewriting Systems and use it for
constituency and dependency treebank pars-
ing. The choice of LCFRS, a formalism with
an extended domain of locality, enables us
to model discontinuous constituents and non-
projective dependencies in a straight-forward
way. The parsing results show that, firstly, our
parser is efficient enough to be used for data-
driven parsing and, secondly, its result quality
for constituency parsing is comparable to the
output quality of other state-of-the-art results,
all while yielding structures that display dis-
continuous dependencies.

a mildly context-sensitive extension of CFG that
allows non-terminals to span tuples of discontin-
uous strings. The reason why we think LCFRS
particularly well-suited is that treebanks with a di-
rect annotation of discontinuous constituents (with
crossing branches as in the German Negra tree-
bank) allow a straight-forward interpretation of the
trees as LCFRS derivation structures, without the
necessity of inducing linguistic knowledde.This
considerably facilitates the extraction of probabilis-
tic LCFRSs (Maier and Sggaard, 2008). The
same holds for non-projective dependency struc-
tures, which can also straight-forwardly be inter-
preted as LCFRS derivation structures (Kuhlmann
and Satta, 2009). Previous approaches that have

used non-context-free formalisms for data-driven
constituency parsing (Plaehn, 2004; Chiang, 2003)
It is a well-known fact that Context-Free Grammasare either too restricted (Kallmeyer et al., 2009) or
(CFG) does not provide enough expressivity to dedo not allow for an immediate interpretation of the
scribe natural languages. For data-driven probabilidreebank trees as derivation structures. Grammar-
tic CFG parsing, some of the information presenbased non-projective dependency parsing has, to our
in constituency treebanks, namely the annotatioknowledge, not been attempted at all.
of non-local dependencies, cannot be captured by First results for PLCFRS constituency parsing
a CFG. It is therefore removed before learning aith a detailed evaluation have been presented in
PCFG from the treebank and must be re-introducedaier (2010). The contribution of this article is
in a post-processing step (Johnson, 2002; Levy arid present the first results for data-driven depen-
Manning, 2004). Non-projective dependencies alsdency parsing on the dependency version of the Ger-
lie beyond the expressivity of CFG. Current depenman NeGra treebank and on the Prague Dependency
dency parsers are able to parse them (McDonald €teebank. Furthermore, we give greater detail on the
al., 2005; Nivre et al., 2007). However, the correparser and the experimental setup. We also addition-
sponding parsing algorithms are not grammar-basedlly investigate the effect on manually introduced
We propose to use a grammar formalism witlcategory splits for PLCFRS constituency parsing.
an extended domain of locality that is able t

. . Treebank trees in which non-local dependencies are anno-
ca_lpture the non-local dEpendenCIGS both in Co@éted differently, such as with trace nodes in the Penn Baeb
stituency and dependency treebanks. We choggyiq also be interpreted as LCFRS derivations given ancappr

Linear Context-Free Rewriting Systems (LCFRS)priate transformation algorithm.

1 Introduction



The remainder of this paper is structured as folkCFRS andp : P — [0..1] a function such that
lows. In the following section, we present the forfor all A € N: EA( A@) — @) =1.
malism and our parser. Sect. 3 is dedicated the ex-
perimental setup, Sect. 4 contains the experimenta? PLCFRSParsing
results. In Sect. 5, we present a conclusion. Our parser is a probabilistic CYK parser (Seki et
al., 1991), using the technique of weighted deduc-
tive parsing (Nederhof, 2003). We assume without
loss of generality that our LCFRSs are binary (i.e.,
We notate LCFRS with the syntax simple Range have rank) (Gomez-Rodriguez et al., 2009) and do
Concatenation Gramma(SRCG) (Boullier, 1998), not contain rules where some of the LHS compo-
a formalism that is equivalent to LCFRS. nents are: (Boullier, 1998; Seki et al., 1991). Our

binarization algorithm is given in Section 3.4.

2.1 PLCFRS Furthermore, we make the assumption that POS
A LCFRS (Vijay-Shanker et al., 1987) is a tupletagging is done before parsing. The POS tags are
G = (N,T,V,P,S) where a)N is a finite set of special non-terminals of fan-ouit
non-terminals with a functiodim: N — N that de-
termines the_‘a_n-outof eachA_ € N;b)T a_de. Scan: - ERCRESY) A POS tag ofw; 1 1
are disjoint finite sets of terminals and variables; c) A

5:')—><I>‘€Pp(

2 A Parser for Probabilistic Linear
Context-Free Rewriting Systems

_S € N is the start symbol withlim(S) = 1; d) P Unary: — in : B, p] p: A@) — B(@) e P
is a finite set of rewriting rules in+ [log(p)| : [A4, p]
(1) (1) . S o
Aloa, ..o Qgim(ay) = A(Xy 7 X ) Binary: "B [B, pBl,inc : [C, pc]
..Am(Xl(m)’...,Xé;:z(Am)) " inp +inc + log(p) : [A, pal

wherep : A(pa) — B(pp)C(pé) is an instantiated rule.

form > 0 where4, Aq,..., A, € N, Xj(.’) eV Goal: S, {(0.n))]

forl <i<m,1<j<dim(4;)anda; € (T'U
V)*for1 < i < dim(A). Forallr € P, every
variableX occurring inr occurs exactly once in the
left-hand side (LHS) and exactly once in the right-
hand side (RHS). ad(.JI SCAN results taA

For a given rule, the length of the RHS is called While A # 0 do.
therank of the rule. The maximal fan-out of all non- remove bestiten : [ from.A

. . . addz : ItoC
terminals in an LCFR®/ is called thefan-outof G, if 7 gom itemthen

Figure 2: Weighted CYK deduction system

and the maximal rank of all rules in an LCFRSis stop and output true
called therank of G. else
.7/ . i i
A(ab, od) — ((ab, cd) in yield of A) ;cg all y : I’ deduced fromx : I and items inC
A(aXb,cYd) — A(X,Y) (if (X,Y) inyield of 4, : : o
then also{aXb, cY'd) in yield of A) i tggge '_SIT‘:Z"Xth z:IheCUAthen
S(XY) — A(X,Y) (if (X,Y) inyield of 4, e v
then{XY’) in yield of 5) if z: I’ € Aforsomez then
L = {a™b"c"d™ |n > 0} update weight of’ in A to maz(y, z)
Figure 1: Sample LCFRS engr}? if
end for

A rewriting rule describes how to compute the o s
yield of the LHS non-terminal from the yields of the  gng while
RHS non-terminals. The yield & is the language
of the grammar. See Fig. 1 for a sample LCFRS. Figure 3: Weighted deductive parsing
A probabilistc LCFRS(PLCFRS) is a tuple
(N, T,V,P,S,p) such that(N,T,V,P,S) is a For a given inputo, our items have the forfiy, ]



whereA € N, j € (Pos(w) x Pos(w))®™4) length of 25 words. This leads to a size of
the vector of ranges characterizing all components4,858, resp. 1,651 sentences for the NeGra train-
of the span ofd. We specify the set of weighted ing, resp. test sets and to 13,935, resp. 1,300 sen-
parse items via the deduction rules in Fig. 2. An intences for the PDT training, resp. test set.

stantiated rule is a rule where variables have been )

replaced with corresponding vectors of ranges. Ogt2 Grammar Extraction

parser performs weighted deductive parsing, basédom all of our data sets, we extract PLCFRSs.
on this deduction system. We use a chtadgnd an For the constituent sets, we use the algorithm from
agendad, both initially empty, and we proceed asMaier and Sggaard (2008), for the dependencies the
in Fig. 3. For more details of the parser, see alsalgorithm from Kuhlmann and Satta (2009). For rea-

Kallmeyer and Maier (2010). sons of space, we restrict ourselves here to the exam-
ples in Fig. 4-6.

3 Experimental Setup <

31 Data P

Our data sources are the NeGra treebank (Skut et \)p

al., 1997) and the Prague Dependency Treebank 2.0 l} \)

(PDT) (Hajic et al., 2000). PROAV " VMFIN VVPP — VAINF

We create two different data sets for constituentdaurUbE-}r mufs nachgedacht - werden

about it must thought be

parsing. For the first one, we start out with the un-

modified NeGra treebank. We preprocess the tree-

bank following common practice (Kiibler and Penn, Figure 4: A sample tree from NeGra

2008), attaching all nodes which are attached to the

virtual root node to nodes within the tree such that PROAV(Dariiber) — &

ideally, no new crossing edges are created. In a,ypp(nachgedacht) — ¢

second pass, we attach punctuation which comes vMFINmMuBR) — &

in pairs (parentheses, quotation marks) to the sam&AINF(werden) — ¢

nodes. For the second data set we create a copy of S;(X1X2X3) — VP2(X1, X3) VMFIN(X?)
—

“It must be thought about it”

the preprocessed first data set, in which we apply the/P2(X1, X2X5) VP2 (X1, X2) VAINF(X3)
usual tree transformations for NeGra PCFG parsing, VP2(X1, X2) PROAV(X1) VVPP(X>)
i.e., moving nodes to higher positions until all cross-
ing branches are resolved. The first 90% of both data

sets are used as the training set and the remaining
10% as test set. 3.3 Grammar Annotation

Figure 5: LCFRS rules for the tree in Fig. 4

For dependency parsing, we also create two da@rammar annotation (i.e., manual enhancement of
sets. For the first one, we convert the NeGra corannotation information through category splitting)
stituent annotation to labeled dependencies usirgas previously been successfully employed in pars-
Lin’s (1995) algorithm and Hall and Nivre’s (2008) ing German (Versley, 2005). In order to see if
labeling scheme. For the second dependency datach modifications can have a beneficial effect in
set, we use the training sections 1 to 5 of the PDPLCFRS parsing, we will apply the following cat-
for training and the first 1,300 sentences for testingegory splits to the Negra constituency data sets with
Czech is a language with a rich morphology, whiclunmodified labels (inspired by Petrov and Klein
is reflected by a high number of POS tags with addi2007)): We split the category S (“sentence”) into
tional morphological information in the PDT. As in SRC (“relative clause”) and S (all other categories
previous work, we use a simplified tag set in order t&). Relative clauses mostly occur in a very specific
avoid data sparseness problems (Collins et al., 19% restriction can be greatly alleviated by using a

McDonald et al., 2005). estimate of outside probabilities of parse items which dpep
We only include sentences with a maximabarsing (Kallmeyer and Maier, 2010)



Dependency tree: for all rulesr = A(d) — Ao(ap) ... Am(ay,) in P
with m > 1 do

root aux remover from P
pp aux R:=0
| |} | l pick new non-terminal§’, . .., Cyn_1
r  Daruber muf3 nachgedacht  werden add the ruleA(d) — Ao(an)Ci(71) to R wherey;
PROAY VMFIN VVPP VAINF is obtained by reducing with «;
foral:1<i<m-—2do
Corresponding LCFRS rules: add the ruleC;(7;) — Ai(@)Cip1(it1) to R
PROAV(Dariiber) — ¢ where~,;1, is obtained by reducing; with &;
VVPP(nachgedacht) — ¢ end for
VMFIN(MuB) — ¢ add the rule Cp1(ym=2) -
VAINF(werden) — ¢ Ap—1(am-1)Am(aim) OR
pp(X) — PROAV(X) for every ruler’ € R do .
root(X1 X>X3) —  aux(X1,X3) VMFIN(X>) rep_lace RHS argur_nents of length 1 with new
aux(X1,X2) — pp(X1) VVPP(X>) variables (in both sides) and add the resulPto
aUX(,Xl, X2X3) — aUX(,Xl, XQ) VAlNF(Xg) end for
top(X1) — root(X;) end for

Figure 6: LCFRS rules extracted from a dependencytree Figure 7: Algorithm for binarizing a LCFRS

context, namely as the right part of an NP or a PRytained by keeping all variables dhthat are not in
This splitting should therefore speed up parsing and  Tpis is defined as follows: LetN, T, V, P, S)

increase precision. . _ be an LCFRSa@ € [(T U V)* ] andZ® € VJ
The other category split we introduce concemgyr somei,j € V. Letw = d@,$...$a; be the

the VP category and the POS tags of verbs selectinging obtained form concatenating the components
for a VP. We distinguish between VP-PP ("VP withot 5 separated by a new symbsl ¢ (V U T).

participle verb form”), VP-INF (“VP with infinitive | ot .,/ be the image ofv under a homomorphism

without zu’) and VP-ZU (“VP with zuinfitive”). h defined as follows:h(a) = $ for all @ € T,
Apart from theSandVP splits, we also use both ;(x) = § for all X ¢ {#1,...%;} andh(y) = y
splits togethergo VP). in all other cases. Leji,...yn € V' such that

w € $*y1$Ty$T ... $7y,,$*. Then the vector

_ o (Y1, ... ym) is thereductionof & by z.
Before parsing, we binarize the LCFRS rules of the For instance{aX1, X», bXs) reduced with(Xs)
extracted grammars. The transformation is similarieIOIS (X5, Xs) ancf <a)’( X2bXs) reduced with
to the transformation of a CFG into Chomsky Nor-yX : Idh )? X 1” 20438
mal Form (CNF). The result is an LCFRS of raak | 2>y|e. S(Xy, Xg)aswell.
As in the CFG case, in the transformation, we intro- The binarization algorithm is given in Fig. 7.
duce a non-terminal for each RHS longer teand Fig. 8 shows an example. In this example, there is

split the rule into two rules, using this new intermeONly oneé rule with a RHS longer thah In a first

diate non-terminal. This is repeated until all RHSSEP; We introduce the new non-terminals and rules
are of lengtr. that binarize the RHS. This leads to the &k&tin a

For the presentation of the transformation algoS€cond step, before adding the rules fréno the
fithm. we need the notion of @ductionof a vec- grammar, whenever a right-hand side argument con-
tor @ € [(T U V)]’ by a vectorZ € V7 where all tains several variables, they are collapsed into a sin-

variables inZ occur in@. A reduction is, roughly, 91€ new variable.
e ) _ _ The equivalence of the original LCFRS and the
3An extra top rule is added in order to give the PLCFR

\ ; Sr%inarized grammar is rather straight-forward. Note
parser a unique start symbol in case more than one word has the .
root node as head, i.e., in case more than one ruleraithas  NOWever that the fan-out of the LCFRS can increase
LHS label is extracted. because of the binarization.

3.4 Binarization



Original LCFRS:
S(XYZUVW) — A(X,U)B(Y,V)C(Z,W)
A(eX,aY) — A(X,Y) Aa,a) — ¢
B(bX,bY) — B(X,Y) B(bb) — ¢
C(eX,cY) - C(X,)Y) Clee) —e

Rule with right-hand side of length 2:

S(XYZUVW) — A(X,U)B(Y,V)C(Z,W)

For this rule, we obtain

R={S(XYZUVW) - A(X,U)C1 (Y Z, VW),
C1(YZ, VW) — B(Y,V)C(Z,W)}

Equivalent binarized LCFRS:
S(XPUQ) — A(X,U)C1(P,Q)
C(YZ, VW) — B(Y,V)C(Z, W)

Tree in NeGra Format:

S
VP |
Plgs VMFIN NN AILV VAINF
das muf3 man jetzt machen
that must one  now do

“One has to do that now”

Rule extracted for the S node:
S(XYZU) — VP(X,U) VMFIN (Y) NN(Z)
Reordering for head-outward binarization:
S(XYZU) — NN(Z) VP(X,U) VMFIN (Y)
New rules resulting form binarizing this rule:
S(X) — Spin1(X)

A(aX,aY) — AX,Y) Aa,a) — ¢
B(bX,bY) — B(X,Y)  B(bb) — e
C(eX,cY) = C(X,)Y) Clee) —e

Shin1 (XY Z) — Spin2(X, Z) NN(Y)
Sbi"IQ(XY7 Z) - VP(Xa Z) Sbin3(y)

Figure 8: Sample binarization of a LCFRS Tree after binarization:

In LCFRS, in contrast to CFG, the order of the ﬁsbi"l\
RHS elements of a rule does not matter for the result Shin2—
of a derivation. Therefore, we can reorder the RHS \):
of a rule before binarizing it. In practice, we per- VPlln'nl
form a head-outward binarization where the head is

|
VPyin2

the lowest subtree. It is extended by adding first all
sisters to its left and then all sisters to its right. Con- Shin3 VPTinB
sequently, before binarizing we reorder the RHS ofp S VMEIN NN ADV  VAINE

the rules extracted from the treebank such that first,
all elements to the right of the head are listed in re-
verse order, then all elements to the left of the head

in their original order and then the head itslf. rules introduces during binarization and adding ver-

Furthermore, we add additional unary rUIe%ical and horizontal context from the original trees to

wher_l introducing the h|_g_hest new blnarlzapon NONGach occurrence of this new non-terminal. As verti-
terminal and when deriving the head. This allow

¢ dditional factorization that h q itsel al context, we add the firstlabels on the path from
or an additional factorization that has proved 1tse he root node of the tree that we want to binarize

usefulin parsing. Fig. 9 shows a sample binarizatio[b the root of the entire treebank tree. The vertical

of atree in the NeGra format. context is actually collected during grammar extrac-
For the LCFRSs extracted from dependency gz, 4 then taken into account during binarization

banks, we perform the same type of binarization,¢ y,q les. As horizontal context, during binariza-
The head daughter is always the daughter with tr}ﬁ)n of a rule A(&) — Ao(dh) . .. Am(ar,), for the

POS tag non-terminal. new non-terminal that comprises the RHS elements

A; ... Ay (for somel < i < m), we add the firsh

elements ofd;, A;_1, ..., Ap.

Markovization (Collins, 1999) is achieved by intro-  Figure 10 shows an example of a markovization of

ducing only a single new non-terminal for the neWwhe tree from Fig. 9 with = 1 andh = 2. Here, the
“One could also add first the sisters to the right and then th%:)perS(.:rlpt Is the vertical context and the.SUbscnpt

ones to the left which is what Klein and Manning (2003) do.t e horizontal context of the new non-termidél

However, this has only a negligible effect on parsing result The probabilities are then computed based on the

Figure 9: Sample binarization

3.5 Markovization
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Figure 10: Sample Markovization with= 1, h = 2

6 8 10 12 14 16 18 20 22 24
Sentence length

frequencies of rules in the treebank, using a Maxi- _ _
mum Likelihood estimator (MLE). Such an estima- Figure 11: Number of items
tion has been used before (Kato et al., 2006).

Pos(w))¥™4) 5 We compute precision, recall and
I based on these tuples from gold and parsed test
data. Despite the shortcomings of such a measure
unbin.  bin.  bin. lab. (Rehbein and van Genabith, 2007, e.qg.), it still al-
NeGraLCFRS| 13,858 16,904 4,142 lows to some extent a comparison to previous work

Ssp.| 13,953 17,033 4,179 . . . .
VPsp. | 14.050 18362 4,952 in PCFG parsing. For a more detailed evaluation

3.6 Properties of the Grammars

SoVPsp. | 14144 18503 4.995 of NeGra PLCFRS constituent parsing results, see
NeGra PCEGI 12886 15563  3.898 Maier (2010). We use the previously successfully
NeGra Dep.| 18,520 68,847 49,085 employed markovization settings= 2 andh = 1
PDT | 12,841 38,312 24,119 for all constituent experiments.
Table 1: PLCFRSs extracted from training sets w/ category splits

LCFRS| VP S S VP | PCFG

Tab. 1 contains the properties of the grammars: LP | 73.24 | 73.24 73.98 74.02| 74.10
The number of rules in the unbinarized grammar, LR | 73.56 | 7391 7417 74.45 74.83
the number of rules in the binarized and markovized_£1 | 73-40 | 73.57 74.07 74.24] 74.46
grammar and the number of labels (including POS 77,121 76.98 7747 77.39 78.08

. . . UR | 77.46 | 77.68 77.68 77.84) 78.84
tags) in the binarized and markovized grammar. UF, | 77.29 | 7733 7758 77.62| 78.46

4 Experiments Table 2: NeGra constituent parsing

We run the parser on all data sets described above,

providing gold POS tags in the input. In order to re- | KO5 here R&MO08 P&K 07
late the costs of parsing for each of the data sets, weLabeledF; | 69.94 7446  77.20 80.1
include Fig. 11, which shows the numbers of pro-

duced items for each data set. Table 3: Previous NeGra PCFG parsing

4.1 Congtituency Parsing Tab. 2 presents the constituent parsing results for
é)é)th data sets with (LCFRS) and without (PCFG)

For the evaluation of the constituent parses, we u ) )
crossing branches. For the sake of comparison, we

an EVALB-style metric. For a tree over a string

w, a single constituent is represented by a tuple Syote that our metric is equivalent to the corresponding
(A, p) with A a node label angy € (Pos(w) x  PCFG metric foddim(A) = 1.



report PCFG parsing results from the literafure ison of our dependency parser output, we report
Tab. 3, namely for PCFG parsing with a plain vanilldabeled and unlabeled attachment score and com-
treebank grammar (Kibler, 2005), for PCFG parspletely correct graphs (punctuation included). As
ing with the Stanford parser (Rafferty and Manningmarkovization setting for the PDT set, we choose
2008) (markovization as in our parser), and for the = 2 andh = oo.
current state-of-the-art, namely PCFG parsing with a
. . NeGra PDT

latent variable model (Petrov and Kleln,_2007). We Grammar MST| Grammar MST
see that the LCFRS parser output (which contains UAS 78.08 87.96| 51.44 76.01
more information than the output of a PCFG parser) LAS 71.84 8262 67.09 40.54
is competitive. The PCFG (1-LCFRS) parsing re- UComp| 32.65  42.16| 14.92 28.92
sults are even closer to the ones of current systems. LComp |  25.03  29.56] 9.46 17.23
Recall that these are just first results, much optimiza-
tion potential is left. Table 4: Dependency parsing

Before we evaluate the experiments with category
splits, we replace all split labels in the parser output Tab. 4 contain the dependency parsing results for
with the corresponding original labels. The result®ur parser and the MSTParser (McDonald et al.,
show that the category splits are indeed beneficia#005) for NeGra and PDT. As an overall observa-
both in terms of output quality and speed (cf. thdion, the fact that our results are far off the MST-
number of produced items in Fig. 11). We will con-Parser’s results is certainly surprising. The most
tinue to explore this approach using an automatgefominent difference between the NeGra and the

Literature on parsing with discontinuous con-grammars with 922 non-terminals for NeGra and

stituents is sparse. Hall and Nivre (2008) reconPnly 51 non-terminals for the PDT. While the MST-

struct the crossing branches of NeGra. They parse™&rser is almost not affected by this difference, the
(non-projective) dependency version of the Germal@ct that our NeGra results are superior to our PDT
TIGER treebank (which follows the same annotatesults allows the conclusion that for grammar-based
tion principles as NeGra) and convert the result badk@rsing, more informative edges labels are an advan-
to constituents. For sentences up to length 40 at@de. Thisis also confirmed by the higher number of
perfect tagging, they report a labeléd of 70.79. items for PDT (cf. Fig. 11). We expect therefore
While not directly comparable to our result, we stillthat automated category splitting will lead to a large
lie in the same range. Plaehn (2004) also repor{g]provement. This will be tackled in future work.
results for direct parsing of the discontinuous oMz ~onclusion
stituents using Probabilistic Discontinuous Phrase

Structure Grammar (DPSG). See Maier (2010) fowe have presented a parser for Probabilistic Linear
details. Context-Free Rewriting Systems and have used it to
parse NeGra, a German constituency treebank with
directly annotated crossing branches. Furthermore,
In this section, we present the first grammar-basesie have applied our parser to a dependency version
non-projective dependency parsing results.  Asf NeGra, and to the Prague Dependency Treebank.
Kuhlmann and Satta (2009) note, the principal adfo our knowledge, grammar-based parsing of non-
vantage of grammar-based non-projective depeprojective dependencies has not been attempted be-
dency parsing is that edge probabilities can be findere. Experiments have shown that PLCFRS parsing
tuned while staying polynomially parseable. Thiss feasible and that the results for constituency pars-
is not possible in the Maximum Spanning Tree aping lie in the vicinity of the state-of-the-art.

proach (McDonald and Satta, 2007). For compar- In future work, we will concentrate particularly

5The results from the literature were obtained on sentenced ! the optimization potential for the parsing results.

longer than 25 words and would most likely be better for ouESP€CIally dependency parsing offers many possibil-
sentence length. ities of optimization.

4.2 Dependency Parsing
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