
Tree Adjoining Grammars

Motivation for TAG

Laura Kallmeyer & Benjamin Burkhardt

HHU Düsseldorf

WS 2017/2018

1 / 28



Outline

1. Why CFG is not enough

2. Tree Substitution Grammars

3. Tree Adjoining Grammars

Adjunction and substitution

Adjunction constraints

2 / 28



Why CFG is not enough

... for treating natural language:

1. only atomic non-terminals

2. only weak lexicalization (lexicalization challenge)

3. expressive power is too low (expressivity challenge)

3 / 28



Why CFG is not enough (1) - Atomic non-terminals

S → NP VP NP → John NP → Mary
VP → V VP → V NP V → sleeps V → likes

Possible derivation:

S ⇒ NP VP ⇒ John VP ⇒ John V ⇒ John sleeps
S ∗⇒ John likes Mary
S ∗⇒ John sleeps Mary

How to treat subcategorization frames, number agreement, and case

marking?

(1) a. Kim depends on Sandy.

*Kim depends Sandy.

*Kim depends.

b. *The children depends on Sandy.

c. Kim depends on her/*she.

4 / 28



Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and case

marking?

=⇒ encode the necessary information into the non-terminal

symbols

S → NP
3sg/nom VP

3sg/itr S → NP
3sg/nom VP

3sg/tr
VP

3sg/itr → V
3sg/itr VP

3sg/tr → V
3sg/tr NP3sg/acc

NP
3sg/nom → John NP

3sg/acc → Mary
V

3sg/itr → sleeps V
3sg/tr → likes

S ∗⇒ John likes Mary
S ∗⇒ John sleeps

Drawback: Every possible combination of subcategorization frame,

number agreement, and case marking necessitates its own rule (let

alone the number of non-terminal symbols).

5 / 28



Why CFG is not enough (1)

Example from German: NP → D N (determiner noun pairs)

Müller(2007) presents a CFG with 48 non-terminal symbols and 24

rules!

NP
3sg/nom → Dfem/sg/nom Nfem/sg/nom

NP
3sg/nom → Dmasc/sg/nom Nmasc/sg/nom

NP
3sg/nom → Dneu/sg/nom Nneu/sg/nom

NP
3pl/nom → Dfem/pl/nom Nfem/pl/nom

NP
3pl/nom → Dmasc/pl/nom Nmasc/pl/nom

NP
3pl/nom → Dneu/pl/nom Nneu/pl/nom

. . .

=⇒ grammar writing is tedious and error prone

=⇒ generalizations are hardly expressible

Remedy: feature structures instead of atomic non-terminal

symbols, uni�cation, underspeci�cation

6 / 28



Why CFG is not enough (2) - Only weak lexicalization

Lexicalization

In a lexicalized grammar, each element of the grammar contains at least

one lexical item (terminal symbol).

G1: S → SS, S → a
G2: S → aS, S → a

Formally interesting: A �nite lexicalized grammar provides �nitely

many analyses for each string (�nitely ambiguous).

Linguistically interesting: Syntactic properties of lexical items can

be accounted for more directly.

Computationally interesting: The search space during parsing can

be delimited (grammar �ltering).

7 / 28



Why CFG is not enough (2)

Lexicalizing a CFG

Greibach normal form: A→ aB1...Bk (k ≥ 0)

weak lexicalization: string language is preserved

strong lexicalization: tree structure is preserved

Question: can CFGs be lexicalized such that the set of trees remains

the same (strong lexicalization)?

Answer: No. Only weak lexicalization (same string language).

G1: S → SS, S → a
G2: S → aS, S → a

G1 cannot be strongly lexicalized with some �nite CFG, e.g. G2.

8 / 28



Why CFG is not enough (3) - Low expressive power

Question: Are CFGs powerful enough to describe all natural

language phenomena? Answer: No.

Example: cross-serial dependencies in Dutch and in Swiss

German (Shieber, 1985)

(2) . . .mer

. . .we

d’chind

children.acc

em

the

Hans

Hans.dat

es

the

huus

house.acc

lönd

let

hälfe

help

aastriiche

paint

‘. . .we let the children help Hans paint the house’

n1 n2 n3 v1 v2 v3

A formalism that can generate cross-serial dependencies must be

able to generate the copy language {ww |w ∈ {a, b}∗}.

But: The copy language is not context-free.

9 / 28



Tree Substitution Grammar (TSG)

A tree rewriting version of CFG

A CFG-production corresponds to a TSG-tree with the LHS as

root and the RHS as daughters.

Applying a CFG-production corresponds to substituting a

non-terminal leaf for a new tree.

S → NP VP NP → John
VP → V V → sleeps

⇒

NP

John

S

VPNP

VP

V

V

sleeps

10 / 28



Tree Substitution Grammar (TSG)

TSG-trees can be “higher” than CFG-productions:

NP

John

S

VP

V

sleeps

NP

;

S → NP VP
NP → John
VP → V
V → sleeps

⇒ TSG comes with an extended domain of locality.

⇒ But: recursion cannot be factored away.

11 / 28



Tree Substitution Grammar (2)

A Tree Substitution Grammar (TSG) is a triple G = 〈N , T , I〉
such that

T and N are disjoint alphabets, the terminals and nonterminals,

and

I is a �nite set of initial trees.

The trees can be combined into larger trees by substitution.

The tree language of a TSG is the set of trees generated in this way

that do not contain any remaining non-terminal leaves.

12 / 28



Tree Substitution Grammar (3)

Some important facts:

TSG is weakly equivalent to CFG (same string language).

TSG is not powerful enough to describe cross-serial

dependencies.

It is not possible to �nd a strongly equivalent (same trees)

lexicalized TSG for each CFG.

S → SS
S → a

S

a

S

S

a

S

=⇒ Solution: adjunction operation and adjunction constraints!

13 / 28



Tree Adjoining Grammar (TAG)

TAG = TSG + adjunction + adjunction constraints

The de�nition of TAG goes back to (Joshi et al., 1975).

TAG is among the most frequently used grammar formalisms in

computational linguistics.

TAG is interesting both for its computational properties

(mildly context-sensitivity) and for its linguistic applications.

There are large coverage TAG grammars for English (XTAG,

Philadelphia) and French (FTAG, Paris).

14 / 28



Tree Adjoining Grammar - Adjunction (1)

Rewriting operations:

substitution: replacing a leaf with a new tree.

adjunction: replacing an internal node with a new tree.

Trees that may adjoin are called auxiliary trees and have a special

leaf, the footnode (marked by *). After adjuntion, the subtree below

the target node appears below the footnode.

Example:

VP

VP*ADV

sometimes

The root node and the footnode are required to carry the same label.

The path from the root node to the footnode is called the spine.

Notation: γ[p, γ′] is the tree one obtains from replacing the node at

position p in γ with the tree γ′ (by substitution or adjunction).

15 / 28



Tree Adjoining Grammar - Adjunction (2)

NP

John

S

VP

V

laughs

NP

VP

VP*ADV

sometimes

 

S

VP

VP

V

laughs

ADV

sometimes

NP

John

⇒ TAG comes with an extended domain of locality.

⇒ And: recursion can be factored away by means of adjunction!

16 / 28



Tree Adjoining Grammar - Adjunction (3)

A Tree Adjoining Grammar (TAG) (Joshi & Schabes, 1997) is a

quadruple G = 〈N , T , I ,A〉 such that

T and N are disjoint alphabets, the terminals and nonterminals,

I is a �nite set of initial trees, and

A is a �nite set of auxiliary trees.

The trees in I ∪ A are called elementary trees.

G is lexicalized i� each elementary tree has at least one leaf with a

terminal label (LTAG).

17 / 28



Tree Adjoining Grammar - Adjunction (4)

A derivation starts with an initial tree.

In a �nal derived tree, all leaves must have terminal labels:

Let G = 〈I ,A,N , T〉 be a TAG. Let γ and γ′ be �nite trees.

γ ⇒ γ′ in G i� there is a node position p and an instance γ′
0

of a

tree (possibly derived from some) γ0 ∈ I ∪ A such that

γ′ = γ[p, γ0].
∗⇒ is the re�exive transitive closure of⇒.

The tree language of G is LT (G) := {γ | there is an α ∈ I such

that α
∗⇒ γ and all leaves in γ have terminal labels}.

18 / 28



Tree Adjoining Grammar - Lexicalization challenge

LTAGs strongly lexicalize (�nitely ambiguous) CFGs, but not TAGs.

Example:

S → SS
S → a

is strongly equivalent to

S

a

S

S

a

S*

S

a

S

S

a

S*

S

S

a

S*

S

S

a

S*

⇐

S

S

S

a

S

a

S

S

a

S

a

19 / 28



Tree Adjoining Grammar - Expressivity challenge

TAG can generate cross-serial dependencies in Dutch.

(3) . . . dat

. . . that

Jan

Jan

Wim

Wim

Marie

Marie

de kinderen

the children

zag

saw

helpen

help

leren

teach

zwemmen

swim

‘. . . that Jan saw Wim help Mary teach the children to swim’

20 / 28



Tree Adjoining Grammar - Expressivity challenge

S

V

zwemmen

S

VP

V

ε

NP

de kinderen

S

V

leren

S

VP

V

ε

S*

NP

Marie

S

VP

V

zag

S*

NP

Jan

S

V

helpen

S

VP

V

ε

S*

NP

Wim

But: Also non-crossing dependencies are generated, since it’s not

possible to block adjunction at the root nodes!

21 / 28



Tree Adjoining Grammar - Adjunction constraints (1)

TAG as de�ned above are more powerful than CFG, but they cannot

generate the copy language.

In order to increase the expressive power, adjunction constraints are

introduced that specify for each node

1 whether adjunction is mandatory and

2 which trees can be adjoined.

22 / 28



Tree Adjoining Grammar - Adjunction constraints (2)

A TAG with adjunction constraints is a tuple 〈N , T , I ,A,O,C〉
such that

〈N , T , I ,A〉 is a TAG,

O : {µ |µ is a node in a tree in I ∪A} → {1, 0} is a function, and

C : {µ |µ is a node in a tree in I ∪ A} → P(A) is a function.

23 / 28



Tree Adjoining Grammar - Adjunction constraints (3)

Three types of constraints are distinguished:

Obligatory Adjunction (OA):
a node µ with O(µ) = 1

Null Adjunction (NA):
a node µ with O(µ) = 0 and C(µ) = ∅
Selective Adjunction (SA):
a node µ with O(µ) = 0 and C(µ) 6= ∅ and C(µ) 6= A

It is common practice to let the leaves carry the NA-constraint.

24 / 28



Tree Adjoining Grammar - Expressivity challenge

TAG with adjunction contraints for cross-serial dependencies in Dutch:

SNA

V

zwemmen

SOA

VP

V

ε

NP

de kinderen

SNA

V

leren

SOA

VP

V

ε

S*NA

NP

Marie

SNA

VP

V

zag

S*NA

NP

Jan

SNA

V

helpen

SOA

VP

V

ε

S*NA

NP

Wim

25 / 28



Tree Adjoining Grammar - Expressivity challenge

TAG with adjunction constraints for the copy language

{ww|w ∈ {a, b}∗}:

S

ε

SNA

S

a
S*NA

a

SNA

S

bS*NA

b

26 / 28



Summary

Starting point: can we describe natural languages with CFGs?

CFGs: string rewriting formalism, no strong lexicalization, no

cross-serial dependencies.

TSGs: tree rewriting formalism, no strong lexicalization, no

cross-serial dependencies.

TAG = TSG + adjunction + adjunction constraints

strong lexicalization (at least of CFGs)

cross-serial dependencies

27 / 28



References

Joshi, Aravind K., Leon S. Levy & Masako Takahashi. 1975. Tree Adjunct Grammars. Journal

of Computer and System Science 10. 136–163.

Joshi, Aravind K. & Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg &

A. Salomaa (eds.), Handbook of formal languages, 69–123. Berlin: Springer.

Savitch, Walter J., Emmon Bach, William Marxh & Gila Safran-Naveh (eds.). 1987. The formal

complexity of natural language Studies in Linguistics and Philosophy. Dordrecht, Holland:

Reidel.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Linguistics

and Philosophy 8. 333–343. Reprinted in Savitch et al. (1987).


