
Ranges CYK Parsing Incremental Earley Parsing

Parsing Beyond Context-Free Grammars:
LCFRS Parsing

Laura Kallmeyer & Tatiana Bladier
Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 1

Ranges CYK Parsing Incremental Earley Parsing

Overview

1 Ranges

2 CYK Parsing

3 Incremental Earley Parsing
Filters

[Kal10]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 2

Ranges CYK Parsing Incremental Earley Parsing

Ranges (1)

• During parsing we have to link the terminals and variables in our
LCFRS rules to portions of the input string.

• These can be characterized by their start and end positions.
• A range is an pair of indices 〈i , j〉 that characterizes the span of a
component within the input and a range vector characterizes a
tuple in the yield of a non-terminal.

• The range instantiation of a rule specifies the computation of an
element from the lefthand side yield from elements of in the
yields of the right-hand side non-terminals based on the
corresponding range vectors.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 3

Ranges CYK Parsing Incremental Earley Parsing

Ranges (2)

Example: Rule A(aXa, bYb)→ B(X)C(Y) and input string abababcb.
We assume without loss of generality that our LCFRSs are monotone
and ε-free. Furthermore, because of the linearity, the components of a
tuple in the yield of an LCFRS non-terminal are necessarily
non-overlapping. Then, given this input, we have the following
possible instantiations for this rule:

A(0aba3, 3bab6)→ B(1b2)C(4a5) A(0aba3, 3babcb8)→ B(1b2)C(4abc7))
A(0aba3, 5bcb8)→ B(1b2)C(6c7) A(0ababa5, 5bcb8)→ B(1bab4)C(6c7)
A(2aba5, 5bcb8)→ B(3b4)C(6c7)

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 4

Ranges CYK Parsing Incremental Earley Parsing

Ranges (3)

Definition 1 (Range instantiation, [Bou00])
Let G = (N,T ,V ,P,S) be a LCFRS, w = t1 . . . tn ∈ T n (n ≥ 0) and
r = A(~α)→ A1(~α1) · · ·Am(~αm) ∈ P (0 ≤ m). A range instantiation
of r wrt. w is a function f : V ∪ {Epsi | ~α(i) = ε} ∪ {t ′ | t ′ an
occurrence of some t ∈ T in ~α} → {〈i , j〉 | 0 ≤ i ≤ j ≤ n} such that

a) for all occurrences t ′ of a t ∈ T in ~α, f (t ′) = 〈i − 1, i〉 for some i
with ti = t,

b) for all x , y adjacent in one of the ~α(i) there are i , j , k with
f (x) = 〈i , j〉, f (y) = 〈j , k〉; we define then f (xy) = 〈i , k〉,

c) for all Eps ∈ {Epsi | ~α(i) = ε}, f (Eps) = 〈j , j〉 for some j ; we
define then for every ε-argument ~α(i) that f (~α(i)) = f (Epsi).

A(f (~α))→ A1(f (~α1)) · · ·Am(f (~αm)) with
f (〈x1, . . . , xk〉) = 〈f (x1), . . . , f (xk)〉 is then called an instantiated rule.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 5

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing (1)
First introduced in [SMFK91]; deduction-based definition in, e.g.,
[KM10].

Idea: Once all elements in the RHS of an instantiated rule have been
found, complete the LHS.

• We start with the terminal symbols: whenever we can find a
range instantiation of a rule with rhs ε, we conclude that this rule
can be applied (scan).

• We parse bottom-up: whenever, for am instantiated rule, all
elements in the rhs have been found, we conclude that this rule
can be applied and the lhs of the instantiated rule is deduced
(complete).

• Our input w is in the language iff S with range vector 〈〈0, n〉〉 is
in the final set of results that we have deduced.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 6

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing (2)

Deduction rules:

Items [A, ~ρ] with A ∈ N, ~ρ is a dim(A)-dimensional range vector in w .

Axioms (scan): [A, ~ρ] A(~ρ)→ ε a range instantiated rule

Complete: [A1, ~ρ1], . . . , [Am, ~ρm]
[A, ~ρ]

A(~ρ) → A1(~ρ1), . . . ,Am(~ρm)
a range instantiated rule

Goal item: [S, 〈〈0, n〉〉]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 7

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing: Example (1)

Example: MCFG/LCFRS for the double copy language, input word: ababab
Rewriting rules:

S → f1[A] A→ f2[A] A→ f3[A] A→ f4[] A→ f5[]
Operations:

f1[〈X ,Y ,Z 〉] = 〈XYZ 〉 f4[] = 〈a, a, a〉
f2[〈X ,Y ,Z 〉] = 〈aX , aY , aZ 〉 f5[] = 〈b, b, b〉
f3[〈X ,Y ,Z 〉] = 〈bX , bY , bZ 〉

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 8

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing: Example (2)

Item Rule
1 [A, 〈〈0, 1〉, 〈2, 3〉, 〈4, 5〉〉] axiom with A→ f4[]
2 [A, 〈〈0, 1〉, 〈4, 5〉, 〈2, 3〉〉] axiom with A→ f4[]
3 [A, 〈〈2, 3〉, 〈0, 1〉, 〈4, 5〉〉] axiom with A→ f4[]

. . .
4 [A, 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉] axiom with A→ f5[]
5 [A, 〈〈1, 2〉, 〈5, 6〉, 〈3, 4〉〉] axiom with A→ f5[]

. . .
6 [A, 〈〈0, 2〉, 〈2, 4〉, 〈4, 6〉〉] complete, with 4 and A→ f2[A]
7 [A, 〈〈0, 2〉, 〈4, 6〉, 〈2, 4〉〉] complete, with 5 and A→ f2[A]

. . .
8 [S, 〈〈0, 6〉〉] complete, with 6 and S → f1[A]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 9

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing with binarized LCFRS

Deduction rules for binarized ε-free grammars where, without loss of
generality, either the lhs contains a single terminal and the rhs is ε or
the rule contains only variables:

Items and goal as before.

Scan: [A, 〈〈i , i + 1〉〉] A(wi+1)→ ε ∈ P

Unary: [B, ~ρ]
[A, ~ρ] A(~α)→ B(~α) ∈ P

Binary: [B, ~ρB], [C , ~ρC]
[A, ~ρA]

A(~ρA) → B(~ρB)C(~ρC)
is a range instantiated rule

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 10

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing: Another example (1)

LCFRS G in sRCG format and the input word aabbacbbac.

G = 〈{S,A,B,C}, {a, b, c}, {U,V ,W ,X ,Y ,Z},P, S〉, where

P = { S(VYWZX)→ A(V ,W ,X)B(Y ,Z),
A(a, a, a)→ ε,
A(XU,YV ,ZW)→ A(X ,Y ,Z)C(U,V ,W),
B(b, b)→ ε
B(XV ,WY)→ B(X ,Y)B(V ,W)
C(a, c, c)→ ε }

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 11

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing: Another example (2)

Item Rule
1 [A, 〈〈0, 1〉, 〈4, 5〉, 〈8, 9〉〉] scan
2 [A, 〈〈0, 1〉, 〈1, 2〉, 〈4, 5〉〉] scan

. . .
3 [B, 〈〈2, 3〉, 〈7, 8〉〉] scan
4 [B, 〈〈3, 4〉, 〈6, 7〉〉] scan
5 [B, 〈〈2, 3〉, 〈3, 4〉〉] scan

. . .
6 [C , 〈〈1, 2〉, 〈5, 6〉, 〈9, 10〉〉] scan
7 [C , 〈〈0, 1〉, 〈5, 6〉, 〈9, 10〉〉] scan
8 [A, 〈〈0, 2〉, 〈4, 6〉, 〈8, 10〉〉] complete, with 1 and 6
9 [B, 〈〈2, 4〉, 〈6, 8〉〉] complete with 3 and 4
10 [S, 〈〈0, 10〉〉] complete with 8 and 9

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 12

Ranges CYK Parsing Incremental Earley Parsing

CYK Parsing: Complexity
Complexity of CYK parsing with binarized LCFRSs:

We have to consider the maximal number of possible applications of
the complete rule.

Binary: [B, ~ρB], [C , ~ρC]
[A, ~ρA]

A(~ρA) → B(~ρB)C(~ρC)
is a range instantiated rule

If k is the maximal fan-out in the LCFRS, we have maximal 2k range
boundaries in each of the antecedent items of this rule. For variables
X1,X2 being in the same lhs side argument of the rule, X1 left of X2
and no other variables in between, the right boundary of X1 is the left
boundary of X2. In the worst case, A,B,C all have fan-out k and
each lhs argument contains two variables. This gives 3k independent
range boundaries and consequently a time complexity of O(n3k) for
the entire algorithm.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 13

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing

Strategy:
• Process LHS arguments incrementally, starting from an S-rule
• Whenever we reach a variable, move into rule of correponding rhs
non-terminal (predict or resume).

• Whenever we reach the end of an argument, suspend the rule
and move into calling parent rule.

• Whenever we reach the end of the last argument convert item
into a passive one and complete parent item.

This parser is described in [KM09] and inspired by the Thread
Automata in [Vil02]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 14

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Items

Passive items: [A, ~ρ] where A is a non-terminal of fan-out k and ~ρ is
a range vector of fan-out k
Active items:

[A(~φ)→ A1(~φ1) . . .Am(~φm), pos, 〈i , j〉, ~ρ]

where
• A(~φ)→ A1(~φ1) . . .Am(~φm) ∈ P;
• pos ∈ {0, . . . , n}: We have reached input position pos;
• 〈i , j〉 ∈ N2: We have reached the jth element of ith argument
(dot position);

• ~ρ is a range vector containing variable and terminal bindings. All
elements are initialized to “?”, an initialized vector is called ~ρinit .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 15

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Example (1)

S(X1X2) −→ A(X1,X2) A(aX1, bX2) −→ A(X1,X2) A(a, b) −→ ε

Parsing trace for input w = aabb:

pos. item and dot position ~ρ (bindings) rule
1 0 S(•X1X2) −→ A(X1,X2) (?, ?) axiom
2 0 A(•aX1, bX2) −→ A(X1,X2) (?, ?, ?, ?) predict, 1
3 0 A(•a, b) −→ ε (?, ?) predict, 1
4 1 A(a • X1, bX2) −→ A(X1,X2) (〈0, 1〉, ?, ?, ?) scan, 2
5 1 A(a•, b) −→ ε (〈0, 1〉, ?) scan, 3
6 1 A(•aX1, bX2) −→ A(X1,X2) (?, ?, ?, ?) predict, 4
7 1 A(•a, b) −→ ε (?, ?) predict 4
8 1 S(X1 • X2) −→ A(X1,X2) (〈0, 1〉, ?) susp. 5, 1
9 1 A(a, •b) −→ ε (〈0, 1〉, ?) resume 5, 8

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 16

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Example (2)

pos. item and dot position ~ρ (bindings) rule
10 2 A(a • X1, bX2) −→ A(X1,X2) (〈1, 2〉, ?, ?, ?) scan 6
11 2 A(a•, b) −→ ε (〈1, 2〉, ?) scan 7
12 2 A(•aX1, bX2) −→ A(X1,X2) (?, ?, ?, ?) predict 10
13 2 A(•a, b) −→ ε (?, ?) predict 10
14 2 A(aX1•, bX2) −→ A(X1,X2) (〈0, 1〉, 〈1, 2〉, ?, ?) susp. 11, 4
15 2 S(X1 • X2) −→ A(X1,X2) (〈0, 2〉, ?) susp. 14, 1
16 2 A(aX1, •bX2) −→ A(X1,X2) (〈0, 1〉, 〈1, 2〉, ?, ?) resume 14, 15
17 3 A(aX1, b • X2) −→ A(X1,X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, ?) scan 16
18 3 A(a, •b) −→ ε (〈1, 2〉, ?) resume 11, 17

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 17

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Example (3)

pos. item and dot position ~ρ (bindings) rule
19 4 A(a, b•) −→ ε (〈1, 2〉, 〈3, 4〉) scan 18
20 4 A(〈1, 2〉, 〈3, 4〉) convert 19
21 4 A(aX1, bX2•) −→ A(X1,X2) (〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉) compl. 17, 20
22 4 A(〈0, 2〉, 〈2, 4〉) convert 21
23 4 S(X1X2•) −→ A(X1,X2) (〈0, 2〉, 〈2, 4〉) compl. 15, 22
24 4 S(〈0, 4〉) convert 23

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 18

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Deduction Rules

• Notation:
• ~ρ(X): range bound to variable X .
• ~ρ(〈i , j〉): range bound to jth element of ith argument on LHS.

• Applying a range vector ~ρ containing variable bindings for given
rule c to the argument vector of the lefthand side of c means
mapping the ith element in the arguments to ~ρ(i) and
concatenating adjacent ranges. The result is defined iff every
argument is thereby mapped to a range.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 19

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Initialize, Goal item

Initialize: [S(~φ)→ ~Φ, 0, 〈1, 0〉, ~ρinit] S(~φ)→ ~Φ ∈ P

Goal Item: [S(~φ)→ ~Φ, n, 〈1, j〉, ψ] with |~φ(1)| = j (i.e., dot at the
end of lhs argument).

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 20

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Scan

If next symbol after dot is next terminal in input, scan it.

Scan: [A(~φ)→ ~Φ, pos, 〈i , j〉, ~ρ]
[A(~φ)→ ~Φ, pos + 1, 〈i , j + 1〉, ~ρ′]

~φ(i , j + 1) = wpos+1

where ~ρ′ is ~ρ updated with ~ρ(〈i , j + 1〉) = 〈pos, pos + 1〉.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 21

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Predict

Whenever our dot is left of a variable that is the first argument of
some rhs non-terminal B, we predict new B-rules:

Predict: [A(~φ)→ . . .B(X , . . .) . . . , pos, 〈i , j〉, ~ρA]
[B(~ψ)→ ~Ψ, pos, 〈1, 0〉, ~ρinit]

where ~φ(i , j + 1) = X ,B(~ψ)→ ~Ψ ∈ P

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 22

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Suspend

Suspend:
[B(~ψ)→ ~Ψ, pos ′, 〈i , j〉, ~ρB], [A(~φ)→ . . .B(~ξ) . . . , pos, 〈k, l〉, ~ρA]

[A(~φ)→ . . .B(~ξ) . . . , pos ′, 〈k, l + 1〉, ~ρ]

where

• the dot in the antecedent A-item precedes the variable ~ξ(i),
• |~ψ(i)| = j (ith argument has length j , i.e., is completely
processed),

• |~ψ| < i (ith argument is not the last argument of B),
• ~ρB(~ψ(i)) = 〈pos, pos ′〉
• and for all 1 ≤ m < i : ~ρB(~ψ(m)) = ~ρA(~ξ(m)).

~ρ is ~ρA updated with ~ρA(~ξ(i)) = 〈pos, pos ′〉.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 23

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Convert

Whenever we arrive at the end of the last argument, we convert the
item into a passive one:

Convert:

[B(~ψ)→ ~Ψ, pos, 〈i , j〉, ~ρB]
[B, ρ] |~ψ(i)| = j , |~ψ| = i , ~ρB(~ψ) = ρ

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 24

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Complete

Whenever we have a passive B item we can use it to move the dot
over the variable of the last argument of B in a parent A-rule:

Complete: [B, ~ρB], [A(~φ)→ . . .B(~ξ) . . . , pos, 〈k, l〉, ~ρA]
[A(~φ)→ . . .B(~ξ) . . . , pos ′, 〈k, l + 1〉, ~ρ]

where

• the dot in the antecedent A-item precedes the variable ~ξ(|~ρB|),
• the last range in ~ρB is 〈pos, pos ′〉,
• and for all 1 ≤ m < |~ρB|: ~ρB(m) = ~ρA(~ξ(m)).

~ρ is ~ρA updated with ~ρA(~ξ(|~ρB|)) = 〈pos, pos ′〉.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 25

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Resume

Whenever we are left of a variable that is not the first argument of one
of the rhs non-terminals, we resume the rule of the rhs non-terminal.

Resume:
[A(~φ)→ . . .B(~ξ) . . . , pos, 〈i , j〉, ~ρA],

[B(~ψ)→ ~Ψ, pos ′, 〈k − 1, l〉, ~ρB]
[B(~ψ)→ ~Ψ, pos, 〈k, 0〉, ~ρB]

where

• ~φ(i , j + 1) = ~ξ(k), k > 1 (the next element is a variable that is
the kth element in ~ξ, i.e., the kth argument of B),

• |~ψ(k − 1)| = l , and
• ~ρA(~ξ(m)) = ~ρB(~ψ(m)) for all 1 ≤ m ≤ k − 1.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 26

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Filters

• Filters can be applied to decrease the number of items in the
chart

• A filter is an additional condition on the form of items.
• E.g., in a ε-free grammar, the number of variables in the part of
the lefthand side arguments of a rule that has not been processed
yet must be lower or equal to the length of the remaining input.

We will discuss in the following some filters that are particularly useful
when dealing with natural languages.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 27

Ranges CYK Parsing Incremental Earley Parsing

Incr. Earley Parsing: Remaining Input Length Filter

• In ε-free grammars each variable must cover at least one input
symbol.

• i input symbols left implies no prediction of a clause with more
than i variables or terminals on LHS since no instantiation is
possible

• Condition on active items, can be applied with predict, resume,
suspend and complete

The length of the remaining input must be ≥ the number of variables
and terminal occurrences to the right of the dot in the lefthand side of
the clause, i.e.
An item [A(~φ)→ A1(~φ1) . . .Am(~φm), pos, 〈i , j〉, ~ρ] satisfies the length
filter iff

(n − pos) ≥ (|~φ(i)| − j) + Σdim(A)
k=i+1 |~φ(k)|

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 28

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Preterminal Filter (1)

• Check for the presence of (pre)terminals in the predicted part of
a clause (the part to the right of the dot) in the remaining input,
and

• check that terminals appear in the predicted order and that
distance between two of them is at least the number of
variables/terminals in between.

continued. . .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 29

Ranges CYK Parsing Incremental Earley Parsing

Incremental Earley Parsing: Preterminal Filter (2)
In other words, an active item [A(~φ)→ A1(~φ1) . . .Am(~φm), pos, 〈i , j〉, ~ρ]
satisfies the preterminal filter iff we can find an injective mapping
fT : Term = {〈k, l〉 | ~φ(k, l) ∈ T and either k > i or (k = i and
l > j)} → {pos + 1, . . . , n} such that

1 wfT (〈k,l〉) = ~φ(k, l) for all 〈k, l〉 ∈ Term;

2 for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 = k2 and l1 < l2:
fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) + (l2 − l1);

3 for all 〈k1, l1〉, 〈k2, l2〉 ∈ Term with k1 < k2:
fT (〈k2, l2〉) ≥ fT (〈k1, l1〉) + (|~φ(k1)| − l1) + Σk2−1

k=k1+1|~φ(k)|+ l2.

Checking this filtering condition amounts to a linear traversal of the part of
the lefthand side of the clause that is to the right of the dot. We start with
index i = pos + 1, for every variable or gap we increment i by 1. For every
terminal a, we search the next a in the input, starting at position i . If it
occurs at position j , then we set i = j and continue our traversal of the
remaining parts of the lefthand side of the clause.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 30

References I

[Bou00] Pierre Boullier.
Range Concatenation Grammars.
In Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT2000), pages 53–64,
Trento, Italy, February 2000.

[Kal10] Laura Kallmeyer.
Parsing Beyond Context-Free Grammars.
Cognitive Technologies. Springer, Heidelberg, 2010.

[KM09] Laura Kallmeyer and Wolfgang Maier.
An incremental Earley parser for simple Range Concatenation Grammar.
In Proceedings of IWPT 2009, 2009.

[KM10] Laura Kallmeyer and Wolfgang Maier.
Data-driven parsing with probabilistic Linear Context-Free Rewriting Systems.
In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing,
China, 2010.

[SMFK91] Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229, 1991.

[Vil02] Éric Villemonte de La Clergerie.
Parsing mildly context-sensitive languages with thread automata.
In Proc. of COLING’02, August 2002.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Parsing 31

	Ranges
	

	CYK Parsing
	

	Incremental Earley Parsing
	
	Filters

	Appendix

