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Introduction (1)

• A normal form for a grammar formalism puts additional
constraints on the form of the grammar while keeping the
generative capacity.

• In other words, for every grammar G of a certain formalism, one
can construct a weakly equivalent grammar G ′ of the same
formalism that satisfies additional normal form constraints.

• Example: For CFGs we know that we can construct equivalent
ε-free CFGs, equivalent CFGs in Chomsky Normal Form and
equivalent CFGs in Greibach Normal Form.

• Normal Forms are useful since they facilitate proofs of properties
of the grammar formalism.
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Eliminating useless rules (1)

[Bou98] shows a range of useful properties of simple RCG/LCFRS/
MCFG that can help to make formal proofs and parsing easier.

Boullier defines rules that cannot be used in any derivations for some
w ∈ T ∗ as useless.

Proposition 1
For each k-LCFRS (k-simple RCG) G, there exists an equivalent
simple k ′-LCFRS (k ′-simple RCG) G ′ with k ′ ≤ k that does not
contain useless rules.

The removal of the useless rules can be done in the same way as in
the CFG case [HU79].
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Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in
the CFG case [HU79]:

1. All rules need to be eliminated that cannot lead to a terminal
sequence.
This can be done recursively: Starting from the terminating rules
and following the rules from right to left, the set of all
non-terminals leading to terminals can be computed recursively.
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Eliminating useless rules (3)

1. (continued)
We can characterize this set NT with the following deduction
rules:

[A] A(~α)→ ε ∈ P

[A1], . . . , [Am]
[A] A(~α)→ A1( ~α1) . . .Am( ~αm) ∈ P

All rules that contain non-terminals in their right-hand side that
are not in this set are eliminated.
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Eliminating useless rules (4)

2. Then the unreachable rules need to be eliminated.
This is done starting from all S-rules and moving from left-hand
sides to right-hand sides. If the right-hand side contains a
predicate A, then all A-rules are reachable and so on. Each time,
the rules for the predicates in a right-hand side are added.

We can characterize the set NS of non-terminals reachable from
S with the following deduction rules:

[S]
[A]

[A1], . . . , [Am] A(~α)→ A1( ~α1) . . .Am( ~αm) ∈ P

Rules whose left-hand side predicate is not in this set are
eliminated.
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Eliminating ε-rules (1)

[Bou98, SMFK91] show that the elimination of ε-rules is possible in a
way similar to CFG. We define that a rule is an ε-rule if one of the
arguments of the left-hand side is the empty string ε.

Definition 1
A simple RCG/LCFRS is ε-free if it either contains no ε-rules or there
is exactly one rule S(ε)→ ε and S does not appear in any of the
right-hand sides of the rules in the grammar.

Proposition 2
For every simple k-RCG (k-LCFRS) G there exists an equivalent
ε-free simple k ′-RCG (k ′-LCFRS) G ′ with k ′ ≤ k.
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Eliminating ε-rules (2)

• First, we have to compute for all predicates A, all possibilities to
have empty ranges among the components of the yields.

• For this, we introduce vectors ~ι ∈ {0, 1}dim(A) and we generate a
set Nε of pairs (A,~ι) where ~ι signifies that it is possible for A to
have a tuple τ in its yield with τ(i) = ε if ~ι(i) = 0 and τ(i) 6= ε if
~ι(i) 6= 0.

Example:
S(XY )→ A(X ,Y ), A(a, ε)→ ε, A(ε, a)→ ε, A(a, b)→ ε

Set of pairs characterizing possibilities for ε-components:
Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}
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Eliminating ε-rules (3)

The set Nε is constructed recursively:

1 Nε = ∅.
2 For every rule A(x1, . . . , xdim(A))→ ε, add (A,~ι) to Nε with for

all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if xi = ε, else ~ι(i) = 1.
3 Repeat until Nε does not change any more:

For every rule A(x1, . . . , xdim(A))→ A1(α1) . . .Ak(αk) and all
(A1,~ι1), . . . , (Ak ,~ιk) ∈ Nε:
Calculate a vector (x ′1, . . . , x ′dim(A)) from (x1, . . . , xdim(A)) by
replacing every variable that is the jth variable of Am in the
right-hand side such that ~ιm(j) = 0 with ε.
Then add (A,~ι) to Nε with for all 1 ≤ i ≤ dim(A): ~ι(i) = 0 if
x ′i = ε, else ~ι(i) = 1.
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Eliminating ε-rules (4)

Now that we have the set Nε we can obtain reduced rules from the
ones in the grammar where ε-arguments are left out.

Example:
S(XY )→ A(X ,Y ), A(a, ε)→ ε, A(ε, a)→ ε, A(a, b)→ ε
Nε = {(S, 1), (A, 10), (A, 01), (A, 11)}

Rules after ε-elimination ((A,~ι) is written A~ι):
S ′(X )→ S1(X ), (S ′ takes care of the case of ε ∈ L(G))
S1(X )→ A10(X ), A10(a)→ ε,
S1(X )→ A01(X ), A01(b)→ ε,
S1(XY )→ A11(X ,Y ), A11(a, b)→ ε
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Eliminating ε-rules (5)

To obtain the new rules Pε, we proceed as follows:

1 Pε = ∅
2 We pick a new start symbol S ′ /∈ Nε.

If ε ∈ L(G), we add S ′(ε)→ ε to Pε.
If S1 ∈ Nε, we add S ′(X )→ S1(X ) to Pε.

3 For every rule A(α)→ A1(~x1) . . .Ak(~xk) ∈ P: add all
ε-reductions of this rule to Pε.
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Eliminating ε-rules (6)

The ε-reductions of A(α)→ A1(~x1) . . .Ak(~xk) are obtained as follows:
For all combinations of ~ι1, . . . ,~ιk such that A~ιii ∈ Nε for 1 ≤ i ≤ k:

(i) For all i , 1 ≤ i ≤ k: replace Ai in the rhs with A~ιii and for all j ,
1 ≤ j ≤ dim(Ai ): if ~ιi (j) = 0, then remove the jth component of
A~ιii from the rhs and delete the variable ~xi (j) in the lhs.

(ii) Let ~ι ∈ {0, 1}dim(A) be the vector with ~ι(i) = 0 iff the ith
component of A is empty in the rule obtained from (i). Remove
all ε-components in the lhs and replace A with A~ι.
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Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a
derivation, the order of the components of its lhs in the input is not
necessarily the order of the components in the rule.

Example: S(XY )→ A(X ,Y ),A(aXb, cYd)→ A(Y ,X ),A(e, f )→ ε.

String language:

{(ac)ne(db)n(ca)nf (bd)n | n ≥ 0}
∪{(ac)nafb(db)n(ca)nced(bd)n | n ≥ 0}
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Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG)
A simple RCG is ordered if for every rule A(~α)→ A1( ~α1) . . .Ak( ~αk)
and every Ai (~αi ) = Ai (Y1, . . . ,Ydim(Ai )) (1 ≤ i ≤ k), the order of the
components of ~αi in ~α is Y1, . . . ,Ydim(Ai ).

Proposition 3
For every simple k-RCG G there exists an equivalent ordered simple
k-RCG G ′.

[Mic01, Kra03, Kal10]

In LCFRS terminology, this property is called monotone while in
MCFG terminology, it is called non-permuting.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS Normal Forms 15



Introduction Useless rules and ε-rules Ordered Simple RCG Binarization

Ordered Simple RCG (3)

Idea of the transformation:

• We check for every rule whether the component order in one of
the right-hand side predicates A does not correspond to the one
in the left-hand side.

• If so, we add a new predicate that differs from A only with
respect to the order of the components. We replace A in the rule
with the new predicate with reordered components.

• Furthermore, we add a copy of every A-rule with A replaced in
the left-hand side by the new predicate and reordering of the
components.

We notate the permutations of components as vectors where the ith
element is the image of i . For a predicate A, id is the vector
〈1, 2, . . . , dim(A)〉.
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Ordered Simple RCG (4)

Transformation into an ordered simple RCG:
P ′ := P with all predicates A replaced with Aid;
N ′ := {Aid |A ∈ N};
repeat until P ′ does not change any more:

for all r = Ap(~α)→ Ap1
1 ( ~α1) . . .Apk

k ( ~αk) in P ′:
for all i, 1 ≤ i ≤ k:

if Api
i (~αi ) = Api

i (Y1, . . . ,Ydim(Ai )) and the order of the
Y1, . . . ,Ydim(Ai ) in ~α is p(Y1, . . . ,Ydim(Ai ))
where p is not the identity

then replace Api
i (~αi ) in r with Api◦p

i (p(~αi ))
if Api◦p

i /∈ N ′ then add Api◦p
i to N ′ and

for every Api
i -rule Api

i (~γ)→ Γ ∈ P ′:
add Api◦p

i (p(~γ))→ Γ to P ′
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Ordered Simple RCG (5)
Consider again our example
P ′ = {S(XY )→ A(X ,Y ),A(aXb, cYd)→ A(Y ,X ),A(e, f )→ ε}.

• Problematic rule: A〈1,2〉(aXb, cYd)→ A〈1,2〉(Y ,X )
• Introduce new non-terminal A〈2,1〉 where 〈2, 1〉 is the
permutation that switches the two arguments.
Replace A〈1,2〉(aXb, cYd)→ A〈1,2〉(Y ,X ) with
A〈1,2〉(aXb, cYd)→ A〈2,1〉(X ,Y ).

P ′ = {S(XY )→ A(X ,Y ),A(aXb, cYd)→
A〈2,1〉(X ,Y ),A(e, f )→ ε}

• Add A〈2,1〉(f , e)→ ε and A〈2,1〉(cYd , aXb)→ A〈2,1〉(X ,Y ).
• Now, A〈2,1〉(cYd , aXb)→ A〈2,1〉(X ,Y ) is problematic.
〈2, 1〉 ◦ 〈2, 1〉 = 〈1, 2〉, therefore we replace this rule with
A〈2,1〉(cYd , aXb)→ A〈1,2〉(Y ,X ). A〈1,2〉 is no new non-terminal,
so no further rules are added.
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Ordered Simple RCG (6)

Result:

S〈1〉(XY )→ A〈1,2〉(X ,Y ) A〈1,2〉(e, f )→ ε

A〈1,2〉(aXb, cYd)→ A〈2,1〉(X ,Y ) A〈2,1〉(f , e)→ ε

A〈2,1〉(cYd , aXb)→ A〈1,2〉(Y ,X )

Note that in general, this transformation algorithm is exponential in
the size of the original grammar.
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Binarization (1)

In LCFRS terminology, the length of the right-hand side of a
production is called its rank. The rank of an LCFRS is given by the
maximal rank of its productions.

Proposition 4
For every simple RCG/LCFRS G there exists an equivalent simple
RCG/LCFRS G ′ that is of rank 2.

Unfortunately, the fan-out of G ′ might be higher than the fan-out of
G .

The transformation can be performed similarly to the CNF
transformation for CFG [HU79, GJ08].
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Binarization (2)

Example:

S(XYZUVW )→ A(X ,U)B(Y ,V )C(Z ,W )
A(aX , aY )→ A(X ,Y ) A(a, a)→ ε
B(bX , bY )→ B(X ,Y ) B(b, b)→ ε
C(cX , cY )→ C(X ,Y ) C(c, c)→ ε

Equivalent binarized grammar:

S(XPUQ)→ A(X ,U)C1(P,Q) C1(YZ ,VW )→ B(Y ,V )C(Z ,W )
A(aX , aY )→ A(X ,Y ) A(a, a)→ ε
B(bX , bY )→ B(X ,Y ) B(b, b)→ ε
C(cX , cY )→ C(X ,Y ) C(c, c)→ ε
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Binarization (3)

We define the reduction of a vector ~α1 ∈ [(T ∪ V )∗]k1 by a vector
~x ∈ (V ∗)k2 where all variables in ~x occur in ~α1 as follows:

Take all variables from ~α1 (in their order) that are not in ~x while
starting a new component in the resulting vector whenever an element
is, in ~α1, the first element of a component or preceded by a variable
from ~x or a terminal.

Examples:

1 〈aX1,X2, bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉.
2 〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1,X3〉 as well.
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Binarization (4)

Transformation into a simple RCG of rank 2:

for all r = A(~α)→ A0( ~α0) . . .Am( ~αm) in P with m > 1:
remove r from P and pick new non-terminals C1, . . . ,Cm−1
R := ∅
add the rule A(~α)→ A0( ~α0)C1(~γ1) to R where ~γ1

is obtained by reducing ~α with ~α0
for all i, 1 ≤ i ≤ m − 2:

add the rule Ci (~γi )→ Ai (~αi )Ci+1( ~γi+1) to R where ~γi+1
is obtained by reducing ~γi with ~αi

add the rule Cm−1( ~γm−2)→ Am−1( ~αm−1)Am( ~αm) to R
for every rule r ′ ∈ R

replace rhs arguments of length > 1 with new variables
(in both sides) and add the result to P
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Binarization (5)

In our example, for the rule
S(XYZUVW )→ A(X ,U)B(Y ,V )C(Z ,W ), we obtain

R = { S(XYZUVW )→ A(X ,U)C1(YZ ,VW ),
C1(YZ ,VW )→ B(Y ,V )C(Z ,W ) }

Collapsing sequences of adjacent variables in the rhs leads to the two
rules
S(XPUQ)→ A(X ,U)C1(P,Q), C1(YZ ,VW )→ B(Y ,V )C(Z ,W )
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