Parsing Beyond Context-Free Grammars: LCFRS Normal Forms

Laura Kallmeyer & Tatiana Bladier Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Overview

- **2** Useless rules and ε -rules
- **3** Ordered Simple RCG
- ④ Binarization

[Kal10]

Introduction •	Useless rules and ε-rules	Ordered Simple RCG	Binarization
Introduction	(1)		

- A *normal form* for a grammar formalism puts additional constraints on the form of the grammar while keeping the generative capacity.
- In other words, for every grammar *G* of a certain formalism, one can construct a weakly equivalent grammar *G'* of the same formalism that satisfies additional normal form constraints.
- Example: For CFGs we know that we can construct equivalent ε-free CFGs, equivalent CFGs in Chomsky Normal Form and equivalent CFGs in Greibach Normal Form.
- Normal Forms are useful since they facilitate proofs of properties of the grammar formalism.

Eliminating useless rules (1)

[Bou98] shows a range of useful properties of simple RCG/LCFRS/ MCFG that can help to make formal proofs and parsing easier.

Boullier defines rules that cannot be used in any derivations for some $w \in T^*$ as useless.

Proposition 1

For each k-LCFRS (k-simple RCG) G, there exists an equivalent simple k'-LCFRS (k'-simple RCG) G' with $k' \leq k$ that does not contain useless rules.

The removal of the useless rules can be done in the same way as in the CFG case [HU79].

Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in the CFG case [HU79]:

1. All rules need to be eliminated that cannot lead to a terminal sequence.

This can be done recursively: Starting from the terminating rules and following the rules from right to left, the set of all non-terminals leading to terminals can be computed recursively.

	Useless rules and ε -rules	Ordered Simple RCG	
	00000000		
Eliminatin	g useless rules (3)		

1. (continued)

We can characterize this set N_T with the following deduction rules:

$$\begin{array}{c} \hline [A] & A(\vec{\alpha}) \to \varepsilon \in P \\ \\ \hline \underline{[A_1], \dots, [A_m]} & A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P \end{array}$$

All rules that contain non-terminals in their right-hand side that are not in this set are eliminated.

	Useless rules and ε -rules	Ordered Simple RCG	
	00000000		
—	• • • • • •		
Eliminating useless rules (4)			

 Then the unreachable rules need to be eliminated. This is done starting from all S-rules and moving from left-hand sides to right-hand sides. If the right-hand side contains a predicate A, then all A-rules are reachable and so on. Each time, the rules for the predicates in a right-hand side are added.

We can characterize the set N_S of non-terminals reachable from S with the following deduction rules:

$$[S] \qquad \qquad [A] \qquad \qquad [A] \qquad \qquad A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P$$

Rules whose left-hand side predicate is not in this set are eliminated.

[Bou98, SMFK91] show that the elimination of ε -rules is possible in a way similar to CFG. We define that a rule is an ε -rule if one of the arguments of the left-hand side is the empty string ε .

Definition 1

A simple RCG/LCFRS is ε -free if it either contains no ε -rules or there is exactly one rule $S(\varepsilon) \rightarrow \varepsilon$ and S does not appear in any of the right-hand sides of the rules in the grammar.

Proposition 2

For every simple k-RCG (k-LCFRS) G there exists an equivalent ε -free simple k'-RCG (k'-LCFRS) G' with $k' \leq k$.

	Useless rules and ε -rules	Ordered Simple RCG	
	000000000		
— ··· · ·	• (0)		
Eliminatir	ng ε -rules (2)		

- First, we have to compute for all predicates *A*, all possibilities to have empty ranges among the components of the yields.
- For this, we introduce vectors *i* ∈ {0,1}^{dim(A)} and we generate a set N_ε of pairs (A, *i*) where *i* signifies that it is possible for A to have a tuple τ in its yield with τ(i) = ε if *i*(i) = 0 and τ(i) ≠ ε if *i*(i) ≠ 0.

Example: $S(XY) \rightarrow A(X, Y), A(a, \varepsilon) \rightarrow \varepsilon, A(\varepsilon, a) \rightarrow \varepsilon, A(a, b) \rightarrow \varepsilon$

Set of pairs characterizing possibilities for ε -components: $N_{\varepsilon} = \{(S, 1), (A, 10), (A, 01), (A, 11)\}$

Introduction	Useless rules and ε -rules	Ordered Simple RCG	
	000000000		
	1 (2)		
Eliminatir	$\log \varepsilon$ -rules (3)		

The set N_{ε} is constructed recursively:

- 2 For every rule A(x₁,..., x_{dim(A)}) → ε, add (A, i) to N_ε with for all 1 ≤ i ≤ dim(A): i(i) = 0 if x_i = ε, else i(i) = 1.
- **3** Repeat until N_{ε} does not change any more: For every rule $A(x_1, \ldots, x_{dim(A)}) \rightarrow A_1(\alpha_1) \ldots A_k(\alpha_k)$ and all $(A_1, \vec{\iota}_1), \ldots, (A_k, \vec{\iota}_k) \in N_{\varepsilon}$: Calculate a vector $(x'_1, \ldots, x'_{dim(A)})$ from $(x_1, \ldots, x_{dim(A)})$ by replacing every variable that is the *j*th variable of A_m in the right-hand side such that $\vec{\iota}_m(j) = 0$ with ε . Then add $(A, \vec{\iota})$ to N_{ε} with for all $1 \le i \le dim(A)$: $\vec{\iota}(i) = 0$ if $x'_i = \varepsilon$, else $\vec{\iota}(i) = 1$.

 Introduction
 Useless rules and ε-rules
 Ordered Simple RCG
 Binarization

 ο
 ο
 ο
 ο
 ο

 Eliminating
 ε-rules
 (4)

Now that we have the set N_{ε} we can obtain reduced rules from the ones in the grammar where ε -arguments are left out.

Example: $S(XY) \rightarrow A(X, Y), A(a, \varepsilon) \rightarrow \varepsilon, A(\varepsilon, a) \rightarrow \varepsilon, A(a, b) \rightarrow \varepsilon$ $N_{\varepsilon} = \{(S, 1), (A, 10), (A, 01), (A, 11)\}$

Rules after ε -elimination $((A, \vec{\iota})$ is written $A^{\vec{\iota}}$): $S'(X) \to S^1(X)$, $(S' \text{ takes care of the case of } \varepsilon \in L(G))$ $S^1(X) \to A^{10}(X)$, $A^{10}(a) \to \varepsilon$, $S^1(X) \to A^{01}(X)$, $A^{01}(b) \to \varepsilon$, $S^1(XY) \to A^{11}(X, Y)$, $A^{11}(a, b) \to \varepsilon$

To obtain the new rules P_{ε} , we proceed as follows:

 $P_{\varepsilon} = \emptyset$

- 2 We pick a new start symbol $S' \notin N_{\varepsilon}$. If $\varepsilon \in L(G)$, we add $S'(\varepsilon) \to \varepsilon$ to P_{ε} . If $S^1 \in N_{\varepsilon}$, we add $S'(X) \to S^1(X)$ to P_{ε} .
- **3** For every rule $A(\alpha) \rightarrow A_1(\vec{x}_1) \dots A_k(\vec{x}_k) \in P$: add all ε -reductions of this rule to P_{ε} .

 Introduction
 Useless rules and ε-rules
 Ordered Simple RCG
 Binarization

 ο
 ο
 ο
 ο
 ο

 Eliminating
 ε-rules
 (6)

The ε -reductions of $A(\alpha) \to A_1(\vec{x}_1) \dots A_k(\vec{x}_k)$ are obtained as follows: For all combinations of $\vec{\iota}_1, \dots, \vec{\iota}_k$ such that $A_i^{\vec{\iota}_i} \in N_{\varepsilon}$ for $1 \le i \le k$:

(i) For all *i*, 1 ≤ *i* ≤ *k*: replace A_i in the rhs with A_i^{*i*} and for all *j*, 1 ≤ *j* ≤ dim(A_i): if *i*_i(*j*) = 0, then remove the *j*th component of A_i^{*i*_i} from the rhs and delete the variable *x*_i(*j*) in the lhs.
(ii) Let *i* ∈ {0,1}^{dim(A)} be the vector with *i*(*i*) = 0 iff the *i*th component of A is empty in the rule obtained from (i). Remove all ε-components in the lhs and replace A with A^{*i*}.

In general, in MCFG/LCFRS/simple RCG, when using a rule in a derivation, the order of the components of its lhs in the input is not necessarily the order of the components in the rule.

Example: $S(XY) \rightarrow A(X, Y), A(aXb, cYd) \rightarrow A(Y, X), A(e, f) \rightarrow \varepsilon$.

String language:

 $\{(ac)^n e(db)^n (ca)^n f(bd)^n \mid n \ge 0 \} \\ \cup \{(ac)^n afb(db)^n (ca)^n ced(bd)^n \mid n \ge 0 \}$

Definition 2 (Ordered simple RCG)

A simple RCG is *ordered* if for every rule $A(\vec{\alpha}) \rightarrow A_1(\vec{\alpha_1}) \dots A_k(\vec{\alpha_k})$ and every $A_i(\vec{\alpha_i}) = A_i(Y_1, \dots, Y_{dim(A_i)})$ $(1 \le i \le k)$, the order of the components of $\vec{\alpha_i}$ in $\vec{\alpha}$ is $Y_1, \dots, Y_{dim(A_i)}$.

Proposition 3

For every simple k-RCG G there exists an equivalent ordered simple k-RCG G'.

[Mic01, Kra03, Kal10]

In LCFRS terminology, this property is called *monotone* while in MCFG terminology, it is called *non-permuting*.

	Useless rules and ε -rules	Ordered Simple RCG	Binarization
Ordered S	Simple RCG (3)		

Idea of the transformation:

- We check for every rule whether the component order in one of the right-hand side predicates A does not correspond to the one in the left-hand side.
- If so, we add a new predicate that differs from A only with respect to the order of the components. We replace A in the rule with the new predicate with reordered components.
- Furthermore, we add a copy of every *A*-rule with *A* replaced in the left-hand side by the new predicate and reordering of the components.

We notate the permutations of components as vectors where the *i*th element is the image of *i*. For a predicate *A*, *id* is the vector $\langle 1, 2, \ldots, \dim(A) \rangle$.

 Introduction
 Useless rules and e-rules
 Ordered Simple RCG
 Binarization

 Ordered Simple RCG (4)
 Ordered Simple RCG (4)

Transformation into an ordered simple RCG: P' := P with all predicates A replaced with A^{id} ; $N' := \{A^{id} | A \in N\}$; repeat until P' does not change any more:

for all
$$r = A^{p}(\vec{\alpha}) \rightarrow A_{i}^{p_{i}}(\vec{\alpha_{i}}) \dots A_{k}^{p_{k}}(\vec{\alpha_{k}})$$
 in P' :
for all $i, 1 \le i \le k$:
if $A_{i}^{p_{i}}(\vec{\alpha_{i}}) = A_{i}^{p_{i}}(Y_{1}, \dots, Y_{dim(A_{i})})$ and the order of the
 $Y_{1}, \dots, Y_{dim(A_{i})}$ in $\vec{\alpha}$ is $p(Y_{1}, \dots, Y_{dim(A_{i})})$
where p is not the identity

then replace
$$A_i^{p_i}(\vec{\alpha_i})$$
 in r with $A_i^{p_i \circ p}(p(\vec{\alpha_i}))$
if $A_i^{p_i \circ p} \notin N'$ then add $A_i^{p_i \circ p}$ to N' and
for every $A_i^{p_i}$ -rule $A_i^{p_i}(\vec{\gamma}) \to \Gamma \in P'$:
add $A_i^{p_i \circ p}(p(\vec{\gamma})) \to \Gamma$ to P'

 Introduction
 Useless rules and e-rules
 Ordered Simple RCG
 Binarizati

 Ordered Simple RCG (5)
 Ordered Simple RCG (5)

Consider again our example $P' = \{S(XY) \rightarrow A(X, Y), A(aXb, cYd) \rightarrow A(Y, X), A(e, f) \rightarrow \varepsilon\}.$

- Problematic rule: $A^{\langle 1,2
 angle}(aXb,cYd)
 ightarrow A^{\langle 1,2
 angle}(Y,X)$
- Introduce new non-terminal $A^{\langle 2,1\rangle}$ where $\langle 2,1\rangle$ is the permutation that switches the two arguments. Replace $A^{\langle 1,2\rangle}(aXb,cYd) \rightarrow A^{\langle 1,2\rangle}(Y,X)$ with $A^{\langle 1,2\rangle}(aXb,cYd) \rightarrow A^{\langle 2,1\rangle}(X,Y)$.

$$P' = \{S(XY) \to A(X, Y), A(aXb, cYd) \to A^{(2,1)}(X, Y), A(e, f) \to \varepsilon\}$$

- Add $A^{\langle 2,1 \rangle}(f,e) \to \varepsilon$ and $A^{\langle 2,1 \rangle}(cYd,aXb) \to A^{\langle 2,1 \rangle}(X,Y).$
- Now, $A^{\langle 2,1 \rangle}(cYd, aXb) \rightarrow A^{\langle 2,1 \rangle}(X, Y)$ is problematic. $\langle 2,1 \rangle \circ \langle 2,1 \rangle = \langle 1,2 \rangle$, therefore we replace this rule with $A^{\langle 2,1 \rangle}(cYd, aXb) \rightarrow A^{\langle 1,2 \rangle}(Y, X)$. $A^{\langle 1,2 \rangle}$ is no new non-terminal, so no further rules are added.

Useless rules and ε-rule 000000000 Ordered Simple RCG

Binarization

Ordered Simple RCG (6)

Result:

$$\begin{split} S^{\langle 1 \rangle}(XY) &\to A^{\langle 1,2 \rangle}(X,Y) & A^{\langle 1,2 \rangle}(e,f) \to \varepsilon \\ A^{\langle 1,2 \rangle}(aXb,cYd) &\to A^{\langle 2,1 \rangle}(X,Y) & A^{\langle 2,1 \rangle}(f,e) \to \varepsilon \\ A^{\langle 2,1 \rangle}(cYd,aXb) &\to A^{\langle 1,2 \rangle}(Y,X) \end{split}$$

Note that in general, this transformation algorithm is exponential in the size of the original grammar.

		Ordered Simple RCG	Binarization
			00000
	(
Binarizati	on (1)		
Dillalizati			

In LCFRS terminology, the length of the right-hand side of a production is called its *rank*. The *rank* of an LCFRS is given by the maximal rank of its productions.

Proposition 4

For every simple RCG/LCFRS G there exists an equivalent simple RCG/LCFRS G' that is of rank 2.

Unfortunately, the fan-out of G' might be higher than the fan-out of G.

The transformation can be performed similarly to the CNF transformation for CFG [HU79, GJ08].

Example:

 $\begin{array}{l} S(XYZUVW) \to A(X, U)B(Y, V)C(Z, W) \\ A(aX, aY) \to A(X, Y) & A(a, a) \to \varepsilon \\ B(bX, bY) \to B(X, Y) & B(b, b) \to \varepsilon \\ C(cX, cY) \to C(X, Y) & C(c, c) \to \varepsilon \end{array}$

Equivalent binarized grammar:

 $\begin{array}{ll} S(XPUQ) \rightarrow A(X,U)C_1(P,Q) & C_1(YZ,VW) \rightarrow B(Y,V)C(Z,W) \\ A(aX,aY) \rightarrow A(X,Y) & A(a,a) \rightarrow \varepsilon \\ B(bX,bY) \rightarrow B(X,Y) & B(b,b) \rightarrow \varepsilon \\ C(cX,cY) \rightarrow C(X,Y) & C(c,c) \rightarrow \varepsilon \end{array}$

We define the *reduction of a vector* $\vec{\alpha_1} \in [(T \cup V)^*]^{k_1}$ by a vector $\vec{x} \in (V^*)^{k_2}$ where all variables in \vec{x} occur in $\vec{\alpha_1}$ as follows:

Take all variables from $\vec{\alpha_1}$ (in their order) that are not in \vec{x} while starting a new component in the resulting vector whenever an element is, in $\vec{\alpha_1}$, the first element of a component or preceded by a variable from \vec{x} or a terminal.

Examples:

- $(aX_1, X_2, bX_3) \text{ reduced with } \langle X_2 \rangle \text{ yields } \langle X_1, X_3 \rangle.$
- **2** $\langle aX_1X_2bX_3 \rangle$ reduced with $\langle X_2 \rangle$ yields $\langle X_1, X_3 \rangle$ as well.

 Introduction
 Useless rules and ε-rules
 Ordered Simple RCG
 Binarization

 o
 o
 o
 o
 o

 Binarization (4)

Transformation into a simple RCG of rank 2:

for all $r = A(\vec{\alpha}) \rightarrow A_0(\vec{\alpha_0}) \dots A_m(\vec{\alpha_m})$ in P with m > 1: remove r from P and pick new non-terminals C_1, \ldots, C_{m-1} $R := \emptyset$ add the rule $A(\vec{\alpha}) \to A_0(\vec{\alpha_0})C_1(\vec{\gamma_1})$ to R where $\vec{\gamma_1}$ is obtained by reducing $\vec{\alpha}$ with $\vec{\alpha_0}$ for all *i*, $1 \le i \le m - 2$: add the rule $C_i(\vec{\gamma_i}) \to A_i(\vec{\alpha_i})C_{i+1}(\vec{\gamma_{i+1}})$ to R where $\vec{\gamma_{i+1}}$ is obtained by reducing $\vec{\gamma_i}$ with $\vec{\alpha_i}$ add the rule $C_{m-1}(\gamma_{m-2}) \rightarrow A_{m-1}(\alpha_{m-1})A_m(\alpha_m)$ to R for every rule $r' \in R$ replace rhs arguments of length > 1 with new variables (in both sides) and add the result to P

In our example, for the rule $S(XYZUVW) \rightarrow A(X, U)B(Y, V)C(Z, W)$, we obtain

$$R = \{ S(XYZUVW) \rightarrow A(X, U)C_1(YZ, VW), \\ C_1(YZ, VW) \rightarrow B(Y, V)C(Z, W) \}$$

Collapsing sequences of adjacent variables in the rhs leads to the two rules

 $S(XPUQ) \rightarrow A(X, U)C_1(P, Q), \ C_1(YZ, VW) \rightarrow B(Y, V)C(Z, W)$

References I

[Bou98]	Pierre Boullier. A Proposal for a Natural Language Processing Syntactic Backbone. Technical Report 3342, INRIA, 1998.
[GJ08]	Dick Grune and Ceriel Jacobs. Parsing Techniques. A Practical Guide. Monographs in Computer Science. Springer, 2008. Second Edition.
[HU79]	John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison Wesley, 1979.
[Kal10]	Laura Kallmeyer. <i>Parsing Beyond Context-Free Grammars.</i> Cognitive Technologies. Springer, Heidelberg, 2010.
[Kra03]	Marcus Kracht. <i>The Mathematics of Language.</i> Number 63 in Studies in Generative Grammar. Mouton de Gruyter, Berlin, 2003
[Mic01]	Jens Michaelis. <i>On Formal Properties of Minimalist Grammars.</i> PhD thesis, Potsdam University, 2001.
[SMFK91]	Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free grammars. Theoretical Computer Science, 88(2):191–229, 1991.