Parsing Beyond Context-Free Grammars: LCFRS Normal Forms

Laura Kallmeyer & Tatiana Bladier Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Overview

[Introduction](#page-2-0)

- **[Useless rules and](#page-3-0)** *ε***-rules**
- **[Ordered Simple RCG](#page-13-0)**
- **[Binarization](#page-19-0)**

[\[Kal10\]](#page-24-0)

- • A normal form for a grammar formalism puts additional constraints on the form of the grammar while keeping the generative capacity.
- In other words, for every grammar G of a certain formalism, one can construct a weakly equivalent grammar G' of the same formalism that satisfies additional normal form constraints.
- Example: For CFGs we know that we can construct equivalent *ε*-free CFGs, equivalent CFGs in Chomsky Normal Form and equivalent CFGs in Greibach Normal Form.
- Normal Forms are useful since they facilitate proofs of properties of the grammar formalism.

Eliminating useless rules (1)

[\[Bou98\]](#page-24-1) shows a range of useful properties of simple RCG/LCFRS/ MCFG that can help to make formal proofs and parsing easier.

Boullier defines rules that cannot be used in any derivations for some $w \in \mathcal{T}^*$ as useless.

Proposition 1

For each k-LCFRS (k-simple RCG) G, there exists an equivalent simple k'-LCFRS (k'-simple RCG) G' with $k' \leq k$ that does not contain useless rules.

The removal of the useless rules can be done in the same way as in the CFG case [\[HU79\]](#page-24-2).

Eliminating useless rules (2)

The removal of the useless rules can be done in the same way as in the CFG case [\[HU79\]](#page-24-2):

1. All rules need to be eliminated that cannot lead to a terminal sequence.

This can be done recursively: Starting from the terminating rules and following the rules from right to left, the set of all non-terminals leading to terminals can be computed recursively.

1. (continued)

We can characterize this set N_T with the following deduction rules:

$$
\frac{[A]}{[A]} \quad A(\vec{\alpha}) \to \varepsilon \in P
$$
\n
$$
\frac{[A_1], \dots, [A_m]}{[A]} \quad A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \dots A_m(\vec{\alpha_m}) \in P
$$

All rules that contain non-terminals in their right-hand side that are not in this set are eliminated.

2. Then the unreachable rules need to be eliminated. This is done starting from all S-rules and moving from left-hand sides to right-hand sides. If the right-hand side contains a predicate A, then all A-rules are reachable and so on. Each time, the rules for the predicates in a right-hand side are added.

We can characterize the set N_S of non-terminals reachable from S with the following deduction rules:

$$
\frac{[A]}{[S]} \qquad \frac{[A]}{[A_1], \ldots, [A_m]} \quad A(\vec{\alpha}) \to A_1(\vec{\alpha_1}) \ldots A_m(\vec{\alpha_m}) \in P
$$

Rules whose left-hand side predicate is not in this set are eliminated.

[Introduction](#page-2-0) [Useless rules and](#page-3-0) *ε***-rules [Ordered Simple RCG](#page-13-0) [Binarization](#page-19-0)**

Eliminating *ε***-rules (1)**

[\[Bou98,](#page-24-1) [SMFK91\]](#page-24-3) show that the elimination of *ε*-rules is possible in a way similar to CFG. We define that a rule is an *ε*-rule if one of the arguments of the left-hand side is the empty string *ε*.

Definition 1

A simple RCG/LCFRS is *ε*-free if it either contains no *ε*-rules or there is exactly one rule $S(\varepsilon) \to \varepsilon$ and S does not appear in any of the right-hand sides of the rules in the grammar.

Proposition 2

For every simple k-RCG (k-LCFRS) G there exists an equivalent ε -free simple k'-RCG (k'-LCFRS) G' with k' \leq k.

[Introduction](#page-2-0)
 COMPOSITY CONSISTING CONSISTENT CONSIST Eliminating *ε***-rules (2)**

- First, we have to compute for all predicates A, all possibilities to have empty ranges among the components of the yields.
- For this, we introduce vectors $\vec{\iota} \in \{0,1\}^{dim(A)}$ and we generate a set N_{ϵ} of pairs $(A, \vec{\iota})$ where $\vec{\iota}$ signifies that it is possible for A to have a tuple τ in its yield with $\tau(i) = \varepsilon$ if $\vec{l}(i) = 0$ and $\tau(i) \neq \varepsilon$ if $\vec{u}(i) \neq 0.$

Example: $S(XY) \to A(X, Y)$, $A(a, \varepsilon) \to \varepsilon$, $A(\varepsilon, a) \to \varepsilon$, $A(a, b) \to \varepsilon$

Set of pairs characterizing possibilities for *ε*-components: N*^ε* = {(S*,* 1)*,*(A*,* 10)*,*(A*,* 01)*,*(A*,* 11)}

The set N*^ε* is constructed recursively:

$$
\bullet \; N_{\varepsilon}=\emptyset.
$$

- \bullet For every rule $A(x_1,\ldots,x_{\sf dim(A)})\to\varepsilon$, add $(A,\vec{\iota})$ to N_ε with for all $1 \le i \le dim(A)$: $\vec{l}(i) = 0$ if $x_i = \varepsilon$, else $\vec{l}(i) = 1$.
- **³** Repeat until N*^ε* does not change any more: For every rule $A(x_1, \ldots, x_{\sf dim}(A)) \rightarrow A_1(\alpha_1) \ldots A_k(\alpha_k)$ and all $(A_1, \vec{v}_1), \ldots, (A_k, \vec{v}_k) \in N_{\epsilon}$. Calculate a vector $(x'_1, \ldots, x'_{dim(A)})$ from $(x_1, \ldots, x_{dim(A)})$ by replacing every variable that is the *j*th variable of A_m in the right-hand side such that $\vec{v}_m(i) = 0$ with ε . Then add $(A, \vec{\iota})$ to N_{ε} with for all $1 \leq i \leq dim(A)$: $\vec{\iota}(i) = 0$ if $x'_i = \varepsilon$, else $\vec{\iota}(i) = 1$.

[Introduction](#page-2-0) [Useless rules and](#page-3-0) *ε***-rules [Ordered Simple RCG](#page-13-0) [Binarization](#page-19-0) Eliminating** *ε***-rules (4)**

Now that we have the set N*^ε* we can obtain reduced rules from the ones in the grammar where *ε*-arguments are left out.

Example: $S(XY) \to A(X, Y)$, $A(a, \varepsilon) \to \varepsilon$, $A(\varepsilon, a) \to \varepsilon$, $A(a, b) \to \varepsilon$ N*^ε* = {(S*,* 1)*,*(A*,* 10)*,*(A*,* 01)*,*(A*,* 11)}

Rules after ε -elimination $((A, \vec{\iota})$ is written $A^{\vec{\iota}})$: $S'(X) \to S^1$ (X) , $(S'$ takes care of the case of $\varepsilon \in L(G)$) $S^1(X) \rightarrow A^{10}(X)$, $A^{10}(a) \rightarrow \varepsilon$, $S^1(X) \rightarrow A^{01}(X)$, $A^{01}(b) \rightarrow \varepsilon$, $S^1(XY) \rightarrow A^{11}(X,Y)$, $A^{11}(a,b) \rightarrow \varepsilon$

To obtain the new rules P*ε*, we proceed as follows:

1 $P_{\varepsilon} = \emptyset$

- 2 We pick a new start symbol $S' \notin N_{\varepsilon}$. If $\varepsilon \in L(G)$, we add $S'(\varepsilon) \to \varepsilon$ to P_{ε} . If $S^1 \in \mathsf{N}_\varepsilon$, we add $S'(X) \to S^1(X)$ to $P_\varepsilon.$
- **3** For every rule $A(\alpha) \rightarrow A_1(\vec{x}_1) \dots A_k(\vec{x}_k) \in P$: add all *ε*-reductions of this rule to P*ε*.

[Introduction](#page-2-0)
 COMPLICE COMPOSITION CONSUMING COMPOSITION
 COOSCOPY COOSCOPIC COOSCOPI 000000000**0 Eliminating** *ε***-rules (6)**

The *ε*-reductions of $A(\alpha) \rightarrow A_1(\vec{x}_1) \dots A_k(\vec{x}_k)$ are obtained as follows: For all combinations of $\vec{u}_1, \ldots, \vec{u}_k$ such that $A_i^{\vec{u}_i} \in N_\varepsilon$ for $1 \leq i \leq k$:

(i) For all $i, 1 \le i \le k$: replace A_i in the rhs with $A_i^{\vec{i}}$ and for all j , $1 \leq i \leq dim(A_i)$: if $\vec{i}(i) = 0$, then remove the *i*th component of $A_i^{\vec{\iota}_i}$ from the rhs and delete the variable $\vec{x}_i(j)$ in the lhs. **(ii)** Let $\vec{\iota} \in \{0,1\}^{dim(A)}$ be the vector with $\vec{\iota}(i) = 0$ iff the *i*th component of A is empty in the rule obtained from (i). Remove all ε -components in the lhs and replace A with $A^{\vec{\iota}}$.

In general, in MCFG/LCFRS/simple RCG, when using a rule in a derivation, the order of the components of its lhs in the input is not necessarily the order of the components in the rule.

Example: $S(XY) \to A(X, Y)$, $A(aXb, cYd) \to A(Y, X)$, $A(e, f) \to \varepsilon$.

String language:

 $\{(ac)^n e(db)^n (ca)^n f(bd)^n | n \ge 0\}$ ∪{(ac)ⁿafb(db)ⁿ(ca)ⁿced(bd)ⁿ | $n \ge 0$ }

Definition 2 (Ordered simple RCG)

A simple RCG is *ordered* if for every rule $A(\vec{\alpha}) \rightarrow A_1(\vec{\alpha_1}) \dots A_k(\vec{\alpha_k})$ and every $A_i(\vec{\alpha_i}) = A_i(Y_1, \ldots, Y_{\sf dim}(A_i))$ $(1 \leq i \leq k)$, the order of the $\mathsf{components}\; \mathsf{of}\; \vec{\alpha_i}$ in $\vec{\alpha}$ is $\mathsf{Y}_1, \ldots, \mathsf{Y}_{\mathsf{dim}(\mathsf{A}_i)}.$

Proposition 3

For every simple k-RCG G there exists an equivalent ordered simple k -RCG G' .

[\[Mic01,](#page-24-4) [Kra03,](#page-24-5) [Kal10\]](#page-24-0)

In LCFRS terminology, this property is called *monotone* while in MCFG terminology, it is called non-permuting.

Idea of the transformation:

- We check for every rule whether the component order in one of the right-hand side predicates A does not correspond to the one in the left-hand side.
- If so, we add a new predicate that differs from A only with respect to the order of the components. We replace A in the rule with the new predicate with reordered components.
- Furthermore, we add a copy of every A-rule with A replaced in the left-hand side by the new predicate and reordering of the components.

We notate the permutations of components as vectors where the *i*th element is the image of i . For a predicate A , id is the vector $\langle 1, 2, \ldots, \text{dim}(A) \rangle$.

[Introduction](#page-2-0) [Useless rules and](#page-3-0) *ε***-rules [Ordered Simple RCG](#page-13-0) [Binarization](#page-19-0) Ordered Simple RCG (4)**

Transformation into an ordered simple RCG: $P' := P$ with all predicates A replaced with A^{id} ; $N' := \{A^{id} | A \in N\};$ repeat until P' does not change any more:

for all
$$
r = A^p(\vec{\alpha}) \rightarrow A_1^{p_1}(\vec{\alpha_1}) \dots A_k^{p_k}(\vec{\alpha_k})
$$
 in P':
for all $i, 1 \le i \le k$:
if $A_i^{p_i}(\vec{\alpha_i}) = A_i^{p_i}(Y_1, \dots, Y_{dim(A_i)})$ and the order of the
 $Y_1, \dots, Y_{dim(A_i)}$ in $\vec{\alpha}$ is $p(Y_1, \dots, Y_{dim(A_i)})$
where p is not the identity

$$
\begin{array}{rl}\text{then replace } A_i^{p_i}(\vec{\alpha_i}) \text{ in } r \text{ with } A_i^{p_i \circ p}(p(\vec{\alpha_i}))\\ \text{if } A_i^{p_i \circ p} \notin N' \text{ then add } A_i^{p_i \circ p} \text{ to } N' \text{ and } \\ \text{for every } A_i^{p_i} \text{-rule } A_i^{p_i}(\vec{\gamma}) \to \Gamma \in P':\\ \text{add } A_i^{p_i \circ p}(p(\vec{\gamma})) \to \Gamma \text{ to } P'\end{array}
$$

[Introduction](#page-2-0) [Useless rules and](#page-3-0) *ε***-rules [Ordered Simple RCG](#page-13-0) [Binarization](#page-19-0)**

Ordered Simple RCG (5)

Consider again our example $P' = \{S(XY) \rightarrow A(X, Y), A(aXb, cYd) \rightarrow A(Y, X), A(e, f) \rightarrow \varepsilon\}.$

- Problematic rule: $A^{(1,2)}(a X b, c Y d) \rightarrow A^{(1,2)}(Y, X)$
- Introduce new non-terminal $A^{\langle 2,1\rangle}$ where $\langle 2,1\rangle$ is the permutation that switches the two arguments. $\mathsf{Replace}\; A^{\langle 1,2\rangle}(\mathsf{a}X\mathsf{b},\mathsf{c}\mathsf{Y}\mathsf{d})\to A^{\langle 1,2\rangle}(\mathsf{Y},X)$ with $A^{\langle 1,2\rangle}(a X b, c Y d) \rightarrow A^{\langle 2,1\rangle}(X, Y).$

$$
P' = \{S(XY) \rightarrow A(X, Y), A(aXb, cYd) \rightarrow A^{(2,1)}(X, Y), A(e, f) \rightarrow \varepsilon\}
$$

- Add $A^{\langle 2,1\rangle}(f,e) \to \varepsilon$ and $A^{\langle 2,1\rangle}(c\textit{Yd},a\textit{Xb}) \to A^{\langle 2,1\rangle}(X,Y)$.
- Now, $A^{\langle 2,1\rangle}(\mathcal{C}Yd, aXb)\rightarrow A^{\langle 2,1\rangle}(X,Y)$ is problematic. $\langle 2, 1 \rangle \circ \langle 2, 1 \rangle = \langle 1, 2 \rangle$, therefore we replace this rule with $\mathcal{A}^{\langle 2,1\rangle}(\mathcal{C}Yd, aXb)\rightarrow \mathcal{A}^{\langle 1,2\rangle}(Y,X).$ $\mathcal{A}^{\langle 1,2\rangle}$ is no new non-terminal, so no further rules are added.

[Introduction](#page-2-0) [Useless rules and](#page-3-0) *ε***-rules [Ordered Simple RCG](#page-13-0) [Binarization](#page-19-0)**

Ordered Simple RCG (6)

Result:

$$
S^{\langle 1 \rangle}(XY) \rightarrow A^{\langle 1,2 \rangle}(X,Y) \qquad A^{\langle 1,2 \rangle}(e,f) \rightarrow \varepsilonA^{\langle 1,2 \rangle}(aXb, cYd) \rightarrow A^{\langle 2,1 \rangle}(X,Y) \qquad A^{\langle 2,1 \rangle}(f,e) \rightarrow \varepsilonA^{\langle 2,1 \rangle}(cYd, aXb) \rightarrow A^{\langle 1,2 \rangle}(Y,X)
$$

Note that in general, this transformation algorithm is exponential in the size of the original grammar.

In LCFRS terminology, the length of the right-hand side of a production is called its rank. The rank of an LCFRS is given by the maximal rank of its productions.

Proposition 4

For every simple RCG/LCFRS G there exists an equivalent simple RCG/LCFRS G' that is of rank 2.

Unfortunately, the fan-out of G' might be higher than the fan-out of G.

The transformation can be performed similarly to the CNF transformation for CFG [\[HU79,](#page-24-2) [GJ08\]](#page-24-6).

Example:

 $S(XYZUVW) \rightarrow A(X, U)B(Y, V)C(Z, W)$ $A(aX, aY) \rightarrow A(X, Y)$ $A(a, a) \rightarrow \varepsilon$ $B(bX, bY) \rightarrow B(X, Y)$ $B(b, b) \rightarrow \varepsilon$ $C(cX, cY) \rightarrow C(X, Y)$ $C(c, c) \rightarrow \varepsilon$

Equivalent binarized grammar:

 $S(XPUQ) \rightarrow A(X, U)C_1(P, Q)$ $C_1(YZ, VW) \rightarrow B(Y, V)C(Z, W)$ $A(aX, aY) \rightarrow A(X, Y)$ $A(a, a) \rightarrow \varepsilon$ $B(bX, bY) \rightarrow B(X, Y)$ $B(b, b) \rightarrow \varepsilon$ $C(cX, cY) \rightarrow C(X, Y)$ $C(c, c) \rightarrow \varepsilon$

We define the *reduction of a vector* $\vec{\alpha_{1}} \in [(\,T \cup V)^{\ast}]^{k_{1}}$ *by a vector* $\vec{x} \in (V^*)^{k_2}$ where all variables in \vec{x} occur in $\vec{\alpha_1}$ as follows:

Take all variables from $\vec{\alpha_1}$ (in their order) that are not in \vec{x} while starting a new component in the resulting vector whenever an element is, in $\vec{\alpha_1}$, the first element of a component or preceded by a variable from \vec{x} or a terminal

Examples:

- **1** $\langle aX_1, X_2, bX_3 \rangle$ reduced with $\langle X_2 \rangle$ yields $\langle X_1, X_3 \rangle$.
- **2** $\langle aX_1X_2bX_3 \rangle$ reduced with $\langle X_2 \rangle$ yields $\langle X_1, X_3 \rangle$ as well.

Transformation into a simple RCG of rank 2:

for all
$$
r = A(\vec{\alpha}) \rightarrow A_0(\vec{\alpha_0}) \dots A_m(\vec{\alpha_m})
$$
 in P with $m > 1$: remove r from P and pick new non-terminals C_1, \dots, C_{m-1} $R := \emptyset$ add the rule $A(\vec{\alpha}) \rightarrow A_0(\vec{\alpha_0}) C_1(\vec{\gamma_1})$ to R where $\vec{\gamma_1}$ is obtained by reducing $\vec{\alpha}$ with $\vec{\alpha_0}$ for all $i, 1 \leq i \leq m-2$: add the rule $C_i(\vec{\gamma_i}) \rightarrow A_i(\vec{\alpha_i}) C_{i+1}(\vec{\gamma_{i+1}})$ to R where $\vec{\gamma_{i+1}}$ is obtained by reducing $\vec{\gamma_i}$ with $\vec{\alpha_i}$ add the rule $C_{m-1}(\gamma_{m-2}) \rightarrow A_{m-1}(\alpha_{m-1}) A_m(\vec{\alpha_m})$ to R for every rule $r' \in R$ replace rhs arguments of length > 1 with new variables (in both sides) and add the result to P

In our example, for the rule $S(XYZUVW) \rightarrow A(X, U)B(Y, V)C(Z, W)$, we obtain

$$
R = \{ \begin{array}{l} S(XYZUVW) \rightarrow A(X, U)C_1(YZ, VW), \\ C_1(YZ, VW) \rightarrow B(Y, V)C(Z, W) \end{array} \}
$$

Collapsing sequences of adjacent variables in the rhs leads to the two rules

 $S(XPUQ) \rightarrow A(X, U)C_1(P, Q), C_1(YZ, VW) \rightarrow B(Y, V)C(Z, W)$

References I

