
Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Parsing Beyond Context-Free Grammars:
Linear Context-Free Rewriting Systems

Laura Kallmeyer & Tatiana Bladier
Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 1

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Overview

1 Basic Ideas

2 LCFRS and CL

3 LCFRS and MCFG

4 LCFRS with Simple RCG syntax

[Kal10]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 2

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Basic Ideas (1)

Linear Context-Free Rewriting Systems (LCFRS) can be conceived as
a natural extension of CFG:

• In a CFG, non-terminal symbols A can span single strings, i.e.,
the language derivable from A is a subset of T ∗.

• Extension to LCFRS: non-terminal symbols A can span tuples of
(possibly non-adjacent) strings, i.e., the language derivable from
A is a subset of (T ∗)k

⇒ LCFRS displays an extended domain of locality

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 3

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Basic Ideas (2)

Different spans in CFG and LCFRS:

A

γ

CFG:

• •

A

γ1 γ2 γ3

•
LCFRS:

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 4

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Basic Ideas (3)
Example for a non-terminal with a yield consisting of 2 components:

yield(A) = 〈anbn, cndn〉, with n ≥ 1.

The rules in an LCFRS describe how to compute an element in the
yield of the lefthand-side (lhs) non-terminal from elements in the
yields of the right-hand side (rhs) non-terminals.

Ex.: A(ab, cd) → ε A(aXb, cYd) → A(X ,Y)

The start symbol S is of dimension 1, i.e., has single strings as yield
elements.

Ex.: S(XY)→ A(X ,Y)

Language generated by this grammar (yield of S):
{anbncndn | n ≥ 1}.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 5

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Basic Ideas (4)

• In a CFG derivation tree (parse tree), dominance is determined
by the relations between lhs symbol and rhs symbols of a rule.

• Furthermore, there is a linear order on the terminals and on all
rhs of rules.

In an LCFRS, we can also obtain a derivation tree from the rules that
have been applied:

• Dominance is also determined by the relations between lhs
symbol and rhs symbols of a rule.

• There is a linear order on the terminals. BUT: there is no linear
order on all rhs of rules.
As a convention, we draw a non-terminal A left of a non-terminal
B if the first terminal in the span of A precedes the first terminal
in the span of B.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 6

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

Basic Ideas (5)

Ex.: LCFRS for {wcwc |w ∈ {a, b}∗}:

S(XY)→ T (X ,Y) T (aY , aU)→ T (Y ,U)
T (bY , bU)→ T (Y ,U) T (c, c)→ ε

Derivation tree for aacaac:

a a c a a c
T

T
T
S

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 7

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (1)

Interest of LCFRS for CL:

1 Applications in CL (parsing, grammar engineering, etc.).
2 Mild context-sensitivity.
3 Equivalence with several important CL formalisms.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 8

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (2)

Applications in CL

• Grammar engineering and language modeling: Grammatical
Framework is a framework which is equivalent to LCFRS [Lju04].
It is actively used for multilingual grammar development and
allows for an easy treatment of discontinuities [Ran11].

• Grammar engineering and parsing: In TuLiPA [KMPD10], a
multi-formalism parser used in a development environment for
variants of Tree Adjoining Grammar (TAG), LCFRS acts as a
pivot formalism, i.e., instead of parsing directly with a TAG
variant, TuLiPA parses with its equivalent LCFRS, obtained
through a suitable grammar transformation [KP08].

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 9

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (3)

• Modeling of non-concatenative morphology [BB13], such as
stem derivation in Semitic languages. In such languages, words
are derived by combining a discontinuous root with a
discontinuous template.
Ex. (Arabic):

k i t a b (“book”), k a t i b (“writer”), ma k t a b (“desk”)

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 10

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (4)
• Syntax and data-driven parsing:

• Just like phrase structure trees (without crossing branches) can be
described with CFG rules, trees with crossing branches can be
described with LCFRS rules.

• Trees with crossing branches allow to describe discontinuous
constituents, as for example in the Negra and Tiger treebanks.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 11

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (4)

Trees with crossing branches can be interpreted as LCFRS derivation
trees.
⇒ an LCFRS can be straight-forwardly extracted from such treebanks.
This makes LCFRS particularly interesting for data-driven parsing.

PROAV(Darüber) → ε
VMFIN(muß) → ε

VVPP(nachgedacht) → ε
VAINF(werden) → ε

S(X1X2X3) → VP(X1,X3) VMFIN(X2)
VP(X1,X2X3) → VP(X1,X2) VAINF(X3)

VP(X1,X2) → PROAV(X1) VVPP(X2)

LCFRS has been successfully used for data-driven probabilistic
syntactic parsing [KM13, vC12, AL14].

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 12

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (5)

• Machine translation: Synchronous LCFRS have been used for
the modeling of translational equivalence [Kae15]. They can
model certain alignment configurations that cannot be modeled
with synchronous CFGs [Kae13].

(1) je ne veux plus jouer
I do not want to play anymore

〈X (jouer)→ ε,X (to play)→ ε〉
〈X (veux)→ ε,X (do,want)→ ε〉
〈X (ne x1 plus x2)→ X 1 (x1)X 2 (x2),

X (x1 not x2x3 anymore)→ X 1 (x1, x2)X 2 (x3)〉
. . .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 13

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (6)

Mild Context-Sensitivity:

• Natural languages are not context-free.
• Question: How complex are natural languages? In other words,
what are the properties that a grammar formalism for natural
languages should have?

• Goal: extend CFG only as far as necessary to deal with natural
languages in order to capture the complexity of natural
languages.

This effort has lead to the definition of mild context-sensitivity
(Aravind Joshi).

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 14

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (7)

A formalism is mildly context-sensitive if the following holds:

1 It generates at least all context-free languages.
2 It can describe a limited amount of crossing dependencies.
3 Its string languages are polynomial.
4 Its string languages are of constant growth.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 15

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (8)

• LCFRS are mildly context-sensitive.
• We do not have any other formalism that is also mildly
context-sensitive and whose set of string languages properly
contains the string languages of LCFRS.

• Therefore, LCFRS are often taken to provide a
grammar-formalism-based characterization of mild
context-sensitivity.

BUT: There are polynomial languages of constant growth that cannot
be generated by LCFRS.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 16

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and CL (8)

Equivalence with CL formalisms:
LCFRS are weakly equivalent to

• set-local Multicomponent Tree Adjoining Grammar, an extension
of TAG that has been motivated by linguistic considerations;

• Minimalist Grammar, a formalism that was developed in order to
provide a formalization of a GB-style grammar with
transformational operations such as movement;

• finite-copying Lexical Functional Grammar, a version of LFG
where the number of nodes in the c-structure that a single
f-structure can be related with is limited by a grammar constant.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 17

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (1)

• Multiple Context-Free Grammars (MCFG) have been introduced
by [SMFK91] while the equivalent Linear Context-Free Rewriting
Systems (LCFRS) were independently proposed by [VSWJ87].

• The central idea is to extend CFGs such that non-terminal
symbols can span a tuple of strings that need not be adjacent in
the input string.

• The grammar contains productions of the form
A0 → f [A1, . . . ,Aq] where A0, . . . ,Aq are non-terminals and f is
a function describing how to compute the yield of A0 (a string
tuple) from the yields of A1, . . . ,Aq.

• The definition of LCFRS is slightly more restrictive than the one
of MCFG. However, [SMFK91] have shown that the two
formalisms are equivalent.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 18

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (2)

Example: MCFG/LCFRS for the double copy language.
Rewriting rules:
S → f1[A] A→ f2[A] A→ f3[A] A→ f4[] A→ f5[]

Operations:
f1[〈X ,Y ,Z 〉] = 〈XYZ 〉 f4[] = 〈a, a, a〉
f2[〈X ,Y ,Z 〉] = 〈aX , aY , aZ 〉 f5[] = 〈b, b, b〉
f3[〈X ,Y ,Z 〉] = 〈bX , bY , bZ 〉

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 19

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (3)

Definition 1 (Multiple Context-Free Grammar)
A multiple context-free grammar (MCFG) is a 5-tuple 〈N,T ,F ,P,S〉
where

• N is a finite set of non-terminals, each A ∈ N has a fan-out
dim(A) ≥ 1, dim(A) ∈ N;

• T is a finite set of terminals;
• F is a finite set of mcf-functions;
• P is a finite set of rules of the form A0 → f [A1, . . . ,Ak] with
k ≥ 0, f ∈ F such that
f : (T ∗)dim(A1) × · · · × (T ∗)dim(Ak) → (T ∗)dim(A0);

• S ∈ N is the start symbol with dim(S) = 1.

A MCFG with maximal non-terminal fan-out k is called a k-MCFG.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 20

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (4)

Mcf-functions are such that

• each component of the value of f is a concatenation of some
constant strings and some components of its arguments.

• Furthermore, each component of the right-hand side arguments
of a rule is not allowed to appear in the value of f more than
once.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 21

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (5)

Definition 2 (mcf-function)
f is an mcf-function if there is a k ≥ 0 and there are di > 0 for
0 ≤ i ≤ k such that f is a total function from (T ∗)d1 × · · · × (T ∗)dk

to (T ∗)d0 such that

• the components of f (~x1, . . . , ~xk) are concatenations of a limited
amount of terminal symbols and the components xij of the ~xi
(1 ≤ i ≤ k, 1 ≤ j ≤ di), and

• the components xij of the ~xi are used at most once in the
components of f (~x1, . . . , ~xk).

A LCFRS is a MCFG where the mcf-functions f are such that the the
components xij of the ~xi are used exactly once in the components of
f (~x1, . . . , ~xk).

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 22

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (6)

• We can understand a MCFG as a generative device that specifies
the yields of the non-terminals.

• The language of a MCFG is then the yield of the start symbol S.

Ex.: LCFRS for the double copy language.
yield(A) = {〈w ,w ,w〉 |w ∈ {a, b}∗}
yield(S) = {〈www〉 |w ∈ {a, b}∗}

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 23

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS and MCFG (7)

Definition 3 (String Language of an MCFG/LCFRS)

Let G = 〈N,T ,F ,P, S〉 be a MCFG/LCFRS.
1 For every A ∈ N:

• For every A→ f [] ∈ P, f () ∈ yield(A).
• For every A→ f [A1, . . . ,Ak] ∈ P with k ≥ 1 and all tuples
τ1 ∈ yield(A1), . . . , τk ∈ yield(Ak), f (τ1, . . . , τk) ∈ yield(A).

• Nothing else is in yield(A).
2 The string language of G is L(G) = {w | 〈w〉 ∈ yield(S)}.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 24

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS with Simple RCG syntax (1)

• Range Concatentation Grammars (RCG) and the restricted
simple RCG have been introduced in [Bou00].

• Simple RCG are not only equivalent to MCFG and LCFRS but
also represent a useful syntactic variant.

Example: Simple RCG for the double copy language.

S(XYZ)→ A(X ,Y ,Z)
A(aX , aY , aZ)→ A(X ,Y ,Z)
A(bX , bY , bZ)→ A(X ,Y ,Z)
A(a, a, a)→ ε
A(b, b, b)→ ε

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 25

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS with Simple RCG syntax (2)
We redefine LCFRS with the simple RCG syntax:

Definition 4 (LCFRS)
A LCFRS is a tuple G = (N,T ,V ,P, S) where

1 N, T and V are disjoint alphabets of non-terminals, terminals
and variables resp. with a fan-out function dim: N → N. S ∈ N
is the start predicate; dim(S) = 1.

2 P is a finite set of rewriting rules of the form

A0(~α0)→ A1(~x1) · · ·Am(~xm)

with m ≥ 0, ~α0 ∈ [(T ∪ V)∗]dim(A0), ~xi ∈ V dim(Ai) for 1 ≤ i ≤ m
and it holds that every variable X ∈ V occurring in the rule
occurs exactly once in the left-hand side and exactly once in the
right-hand side.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 26

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS with Simple RCG syntax (3)
In order to apply a rule, we have to map variables to strings of
terminals:

Definition 5 (LCFRS rule instantiation)
Let G = 〈N,T ,V , S,P〉 be a LCFRS.
For a rule c = A(~α)→ A1(~α1) . . .Am(~αm) ∈ P, every function
f : {x | x ∈ V , x occurs in c} → T ∗ is an instantiation of c.
We call A(f (~α))→ A1(f (~α1)) . . .Am(f (~αm)) then an instantiated
clause where f is extended as follows:

1 f (ε) = ε;
2 f (t) = t for all t ∈ T ;
3 f (xy) = f (x)f (y) for all x , y ∈ T ∗;
4 f (〈α1, . . . , αm〉) = (〈f (α1), . . . , f (αm)〉) for all

(〈α1, . . . , αm〉) ∈ [(T ∪ V)∗]m, m ≥ 1.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 27

Basic Ideas LCFRS and CL LCFRS and MCFG LCFRS with Simple RCG syntax

LCFRS with Simple RCG syntax (4)

Definition 6 (LCFRS string language)
Let G = 〈N,T ,V , S,P〉 be a LCFRS.

1 The set Lpred(G) of instantiated predicates A(~τ) where A ∈ N
and ~τ ∈ (T ∗)k for some k ≥ 1 is defined by the following
deduction rules:

a) A(~τ) A(~τ)→ ε is an instantiated clause

b) A1(~τ1) . . .Am(~τm)
A(~τ)

A(~τ)→ A1(~τ1) . . .Am(~τm)
is an instantiated clause

2 The string language of G is

{w ∈ T ∗ | S(w) ∈ Lpred(G)}.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 28

References I
[AL14] Krasimir Angelov and Peter Ljunglöf.

Fast statistical parsing with parallel multiple context-free grammars.
In Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics, pages 368–376, Gothenburg, Sweden, 2014.

[BB13] Jan A. Botha and Phil Blunsom.
Adaptor grammars for learning non-concatenative morphology.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
345–356, Seattle, WA, 2013.

[Bou00] Pierre Boullier.
Range Concatenation Grammars.
In Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT2000), pages 53–64,
Trento, Italy, February 2000.

[Kae13] Miriam Kaeshammer.
Synchronous linear context-free rewriting systems for machine translation.
In Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in Statistical Translation,
pages 68–77, Atlanta, GA, 2013.

[Kae15] Miriam Kaeshammer.
Hierarchical machine translation with discontinuous phrases.
In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, 2015.

[Kal10] Laura Kallmeyer.
Parsing Beyond Context-Free Grammars.
Cognitive Technologies. Springer, Heidelberg, 2010.

[KM13] Laura Kallmeyer and Wolfgang Maier.
Data-driven parsing using probabilistic linear context-free rewriting systems.
Computational Linguistics, 39(1):87–119, 2013.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 29

References II
[KMPD10] Laura Kallmeyer, Wolfgang Maier, Yannick Parmentier, and Johannes Dellert.

Tulipa-parsing extensions of tag with range concatenation grammars.
Bulletin of the Polish Academy of Sciences: Technical Sciences, 58(3):377–391, 2010.

[KP08] Laura Kallmeyer and Yannick Parmentier.
On the relation between Multicomponent Tree Adjoining Grammars with Tree Tuples (TT-MCTAG) and
Range Concatenation Grammars (RCG).
In Second International Conference on Language and Automata Theory and Applications (LATA 2008),
Revised Papers, Lecture Notes in Computer Science, pages 263–274. Springer, Tarragona, Spain, 2008.

[Lju04] Peter Ljunglöf.
Expressivity and Complexity of the Grammatical Framework.
PhD thesis, Department of Computer Science, Gothenburg University and Chalmers University of
Technology, November 2004.

[Ran11] Aarne Ranta.
Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford, 2011.

[SMFK91] Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229, 1991.

[vC12] Andreas van Cranenburgh.
Efficient parsing with linear context-free rewriting systems.
In Proceedings of the 13th Conference of the European Chapter of the Association for Computational
Linguistics, pages 460–470, Avignon, France, 2012.

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
Characterizing structural descriptions produced by various grammatical formalisms.
In Proceedings of ACL, Stanford, 1987.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: LCFRS 30

	Basic Ideas
	

	LCFRS and CL
	

	LCFRS and MCFG
	

	LCFRS with Simple RCG syntax
	

	Appendix

