Parsing Beyond Context-Free Grammars: Introduction

Laura Kallmeyer & Tatiana Bladier Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Overview

- CFG and natural languages
- 2 Polynomial extensions of CFG
- Basic Definitions

[Kal10]

CFG and natural languages (1)

A context-free grammar (CFG) is a set of rewriting rules that tell us how to replace a non-terminal by a sequence of non-terminal and terminal symbols.

Example:

$$S \rightarrow a S b S \rightarrow ab$$

The string language generated by this grammar is $\{a^nb^n \mid n \ge 1\}$.

CFG and natural languages (2)

Sample CFG $G_{telescope}$:

```
\rightarrow NP VP
                                           NP
       \rightarrow VP PP | V NP
VP
                                           Ν
                                                   \rightarrow NPP
PΡ
       \rightarrow P NP
Ν
       \rightarrow man | girl | telescope
                                           D
                                                        the
                                           Ρ
Ν
            John
                                                         with
       \rightarrow
       \rightarrow
             saw
```

CFG and natural languages (3)

Context-free languages (CFLs)

- can be recognized in polynomial time $(\mathcal{O}(n^3))$;
- are accepted by push-down automata;
- have nice closure properties (e.g., closure under homomorphisms, intersection with regular languages . . .);
- satisfy a pumping lemma;
- can describe nested dependencies $(\{ww^R \mid w \in T^*\})$.

[HU79]

CFG and natural languages (4)

Question: Is CFG powerful enough to describe all natural language phenomena?

Answer: No. There are constructions in natural languages that cannot be adequately described with a context-free grammar.

Example: cross-serial dependencies in Dutch and in Swiss German.

Dutch:

```
(1) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim
' ... that Wim saw Jan help Marie teach the children to swim'
```

Basic Definitions

Swiss German:

- (2) ... das mer em Hans es huus hälfed aastriiche
 ... that we Hans_{Dat} house_{Acc} helped paint
 ' ... that we helped Hans paint the house'
- (3) ... das mer d'chind em Hans es huus lönd hälfe ... that we the children_{Acc} Hans_{Dat} house_{Acc} let help aastriiche paint '... that we let the children help Hans paint the house'

Swiss German uses case marking and displays cross-serial dependencies.

[Shi85] shows that Swiss German is not context-free.

CFG and natural languages (6)

If closure under homomorphisms and intersection with regular languages is given, the following holds:

A formalism that can generate cross-serial dependencies can also generate the copy language $\{ww \mid w \in \{a,b\}^*\}$.

The copy language is not context-free.

Therefore we are interested in extensions of CFG in order to describe all natural language phenomena.

CFG and natural languages (7)

Idea [Jos85]: characterize the amount of context-sensitivity necessary for natural languages.

Mildly context-sensitive formalisms have the following properties:

- 1 They generate (at least) all CFLs.
- 2 They can describe a limited amount of cross-serial dependencies. In other words, there is a $n \ge 2$ up to which the formalism can generate all string languages $\{w^n \mid w \in T^*\}$.
- 3 They are polynomially parsable.
- **1** Their string languages are of constant growth. In other words, the length of the words generated by the grammar grows in a linear way, e.g., $\{a^{2^n} \mid n \ge 0\}$ does not have that property.

Polynomial extensions of CFG (1)

Tree Adjoining Grammars (TAG), [JLT75, JS97]:

- Tree-rewriting grammar.
- Extension of CFG that allows to replace not only leaves but also internal nodes with new trees.
- Can generate the copy language.

Example: TAG for the copy language

Polynomial extensions of CFG (2)

Example: TAG derivation of abab:

Polynomial extensions of CFG (3)

Linear Context-free rewriting systems (LCFRS) and the equivalent Multiple Context-Free Grammars (MCFG), [VSWJ87, Wei88, SMFK91]

Idea: extension of CFG where non-terminals can span tuples of non-adjacent strings.

Example:
$$yield(A) = \langle a^n b^n, c^n d^n \rangle$$
, with $n \ge 1$.

The rewriting rules tell us how to compute the span of the lefthand side non-terminal from the spans of the righthand side non-terminals.

$$A(ab,cd) \rightarrow \varepsilon \quad A(aXb,cYd) \rightarrow A(X,Y) \quad S(XY) \rightarrow A(X,Y)$$

Generated string language: $\{a^nb^nc^nd^n \mid n \geq 1\}$.

LCFRS is more powerful than TAG but still mildly context-sensitive.

Polynomial extensions of CFG (4)

Summary:

In this course, we are interested in mildly context-sensitive formalisms.

Basic Definitions: Languages (1)

Definition 1 (Alphabet, word, language)

- \bigcirc An alphabet is a nonempty finite set X.
- 2 A string $x_1 ... x_n$ with $n \ge 1$ and $x_i \in X$ for $1 \le i \le n$ is called a nonempty word on the alphabet X. X^+ is defined as the set of all nonempty words on X.
- 3 A new element ε ∉ X⁺ is added: X* := x⁺ ∪ {ε}. For each w ∈ X*, the concatenation of w and ε is defined as follows: wε = εw = w. ε is called the empty word, and each w ∈ X* is called a word on X.
- **4** A set L is called a language iff there is an alphabet X such that $L \subseteq X^*$.

Basic Definitions: Languages (2)

Definition 2 (Homomorphism)

For two alphabets X and Y, a function $f: X^* \to Y^*$ is a homomorphism iff for all $v, w \in X^*$: f(vw) = f(v)f(w).

Definition 3 (Length of a word)

Let X be an alphabet, $w \in X^*$.

- **1** The length of w, |w| is defined as follows: if $w = \varepsilon$, then |w| = 0. If w = xw' for some $x \in X$, then |w| = 1 + |w'|.
- ② For every $a \in X$, we define $|w|_a$ as the number of as occurring in w: If $w = \varepsilon$, then $|w|_a = 0$, if w = aw' then $|w|_a = |w'|_a + 1$ and if w = bw' for some $b \in X \setminus \{a\}$, then $|w|_a = |w'|_a$.

Basic Definitions

Basic Definitions: CFG (1)

Definition 4 (Context-free grammar)

A context-free grammar (CFG) is a tuple $G = \langle N, T, P, S \rangle$ such that

- f 0 N and T are disjoint alphabets, the nonterminals and terminals of G.
- **2** $P \subset N \times (N \cup T)^*$ is a finite set of productions (also called rewriting rules). A production $\langle A, \alpha \rangle$ is usually written $A \to \alpha$.
- **3** $S \in N$ is the start symbol.

Basic Definitions: CFG (2)

Definition 5 (Language of a CFG)

Let $G = \langle N, T, P, S \rangle$ be a CFG. The (string) language L(G) of G is the set $\{w \in T^* \mid S \stackrel{*}{\Rightarrow} w\}$ where

- for $w, w' \in (N \cup T)^*$: $w \Rightarrow w'$ iff there is a $A \to \alpha \in P$ and there are $v, u \in (N \cup T)^*$ such that w = vAu and $w' = v\alpha u$.
- $\stackrel{*}{\Rightarrow}$ is the reflexive transitive closure of \Rightarrow :
 - $w \stackrel{0}{\Rightarrow} w$ for all $w \in (N \cup T)^*$, and
 - for all $w, w' \in (N \cup T)^*$: $w \stackrel{n}{\Rightarrow} w'$ iff there is a v such that $w \Rightarrow v$ and $v \stackrel{n-1}{\Rightarrow} w'$.
 - for all $w, w' \in (N \cup T)^*$: $w \stackrel{*}{\Rightarrow} w'$ iff there is a $i \in \mathbb{N}$ such that $w \stackrel{i}{\Rightarrow} w'$.

A language L is called context-free iff there is a CFG G such that L = L(G).

Basic Definitions

Basic Definitions: CFG (3)

Proposition 1 (Pumping lemma for context-free languages)

Let L be a context-free language. Then there is a constant c such that for all $w \in L$ with $|w| \ge c$: $w = xv_1yv_2z$ with

- $|v_1v_2| \geq 1$,
- $|v_1yv_2| \le c$, and
- for all $i \ge 0$: $xv_1^i yv_2^i z \in L$.

Basic Definitions: CFG (4)

Proposition 2

Context-free languages are closed under homomorphisms, i.e., for alphabets T_1, T_2 and for every context-free language $L_1 \subset T_1^*$ and every homomorphism $h: T_1^* \to T_2^*$, $h(L_1) = \{h(w) \mid w \in L_1\}$ is a context-free language.

Proposition 3

Context-free languages are closed under intersection with regular languages, i.e., for every context-free language L and every regular language L_r , $L \cap L_r$ is a context-free language.

Proposition 4

The copy language $\{ww \mid w \in \{a, b\}^*\}$ is not context-free.

Basic Definitions

Basic Definitions: Trees (1)

Definition 6 (Directed Graph)

- **1** A directed graph is a pair $\langle V, E \rangle$ where V is a finite set of vertices and $E \subseteq V \times V$ is a set of edges.
- **2** For every $v \in V$, we define the in-degree of v as $|\{v' \in V \mid \langle v', v \rangle \in E\}|$ and the out-degree of v as $|\{v' \in V \mid \langle v, v' \rangle \in E\}|$.

 E^+ is the transitive closure of E and E^* is the reflexive transitive closure of E.

Basic Definitions: Trees (2)

Definition 7 (Tree)

A tree is a triple $\gamma = \langle V, E, r \rangle$ such that

- $\langle V, E \rangle$ is a directed graph and $r \in V$ is a special node, the root node.
- γ contains no cycles, i.e., there is no $v \in V$ such that $\langle v, v \rangle \in E^+$,
- only the root $r \in V$ has in-degree 0,
- every vertex $v \in V$ is accessible from r, i.e., $\langle r, v \rangle \in E^*$, and
- all nodes $v \in V \{r\}$ have in-degree 1.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are also called nodes.

Basic Definitions: Trees (3)

Definition 8 (Ordered Tree)

A tree is ordered if it has an additional linear precedence relation $\prec \in V \times V$ such that

- ≺ is irreflexive, antisymmetric and transitive,
- for all v_1, v_2 with $\{\langle v_1, v_2 \rangle, \langle v_2, v_1 \rangle\} \cap E^* = \emptyset$: either $v_1 \prec v_2$ or $v_2 \prec v_1$ and if there is either a $\langle v_3, v_1 \rangle \in E$ with $v_3 \prec v_2$ or a $\langle v_4, v_2 \rangle \in E$ with $v_1 \prec v_4$, then $v_1 \prec v_2$, and
- nothing else is in ≺.

We use Gorn addresses for nodes in ordered trees: The root address is ε , and the *j*th child of a node with address p has address pj.

Basic Definitions: Trees (4)

Definition 9 (Labeling)

A labeling of a graph $\gamma = \langle V, E \rangle$ over a signature $\langle A_1, A_2 \rangle$ is a pair of functions $I: V \to A_1$ and $g: E \to A_2$ with A_1, A_2 possibly distinct.

Definition 10 (Syntactic tree)

Let N and T be disjoint alphabets of non-terminal and terminal symbols. A syntactic tree (over N and T) is an ordered finite labeled tree such that $I(v) \in N$ for each vertex v with out-degree at least 1 and $I(v) \in (N \cup T \cup \{\varepsilon\})$ for each leaf v.

Basic Definitions

Basic Definitions: Trees (5)

Definition 11 (Tree Language of a CFG)

Let $G = \langle N, T, P, S \rangle$ be a CFG.

- **1** A syntactic tree $\langle V, E, r \rangle$ over N and T is a parse tree in G iff
 - $I(v) \in (T \cup \{\varepsilon\})$ for each leaf v,
 - for every $v_0, v_1, \ldots, v_n \in V$, $n \ge 1$ such that $\langle v_0, v_i \rangle \in E$ for $1 \le i \le n$ and $\langle v_i, v_{i+1} \rangle \in \prec$ for $1 \le i < n$, $I(v_0) \to I(v_1) \ldots I(v_n) \in P$.
- 2 A parse tree $\langle V, E, r \rangle$ is a derivation tree in G iff I(r) = S.
- **3** The tree language of *G* is

$$L_T(G) = \{ \gamma \mid \gamma \text{ is a derivation tree in } G \}$$

Basic Definitions: Trees (6)

Definition 12 (Weak and Strong Equivalence)

Let F_1 , F_2 be two grammar formalisms.

- F_1 and F_2 are weakly equivalent iff for each instance G_1 of F_1 there is an instance G_2 of F_2 that generates the same string language and vice versa.
- F_1 and F_2 are strongly equivalent iff for both formalisms the notion of a tree language is defined and, furthermore, for each instance G_1 of F_1 there is an instance G_2 of F_2 that generates the same tree language and vice versa.

References I

[HU79] John E. Hopcroft and Jeffrey D. Ullman.

Introduction to Automata Theory, Languages and Computation.

Addison Wesley, 1979.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.

Tree Adjunct Grammars.

Journal of Computer and System Science, 10:136-163, 1975.

[Jos85] Aravind K. Joshi.

> Tree adjoining grammars: How much contextsensitivity is required to provide reasonable structural descriptions?

In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Parsing, pages 206-250. Cambridge University Press, 1985.

[JS97] Arayind K. Joshi and Yves Schabes.

Tree-Adjoning Grammars.

In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, pages 69–123, Springer, Berlin, 1997

[Kal10] Laura Kallmeyer.

Parsing Beyond Context-Free Grammars.

Cognitive Technologies, Springer, Heidelberg, 2010.

[SBMSN87] Walter J. Savitch, Emmon Bach, William Marxh, and Gila Safran-Naveh, editors.

The Formal Complexity of Natural Language.

Studies in Linguistics and Philosophy, Reidel, Dordrecht, Holland, 1987.

[Shi85] Stuart M. Shieber.

Evidence against the context-freeness of natural language.

Linguistics and Philosophy, 8:333-343, 1985.

Reprinted in [SBMSN87].

References II

[SMFK91] Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami.

On multiple context-free grammars.

Theoretical Computer Science, 88(2):191–229, 1991.

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.

Characterizing structural descriptions produced by various grammatical formalisms.

In Proceedings of ACL, Stanford, 1987.

[Wei88] David J. Weir.

Characterizing Mildly Context-Sensitive Grammar Formalisms.

PhD thesis, University of Pennsylvania, 1988.