
CFG and natural languages Polynomial extensions of CFG Basic Definitions

Parsing Beyond Context-Free Grammars:
Introduction

Laura Kallmeyer & Tatiana Bladier
Heinrich-Heine-Universität Düsseldorf

Sommersemester 2018

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 1

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Overview

1 CFG and natural languages

2 Polynomial extensions of CFG

3 Basic Definitions

[Kal10]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 2

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (1)

A context-free grammar (CFG) is a set of rewriting rules that tell us
how to replace a non-terminal by a sequence of non-terminal and
terminal symbols.

Example:

S → a S b S → ab

The string language generated by this grammar is {anbn | n ≥ 1}.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 3

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (2)

Sample CFG Gtelescope :

S → NP VP NP → D N
VP → VP PP | V NP N → N PP
PP → P NP
N → man | girl | telescope D → the
N → John P → with
V → saw

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 4

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (3)

Context-free languages (CFLs)

• can be recognized in polynomial time (O(n3));
• are accepted by push-down automata;
• have nice closure properties (e.g., closure under homomorphisms,
intersection with regular languages . . .);

• satisfy a pumping lemma;
• can describe nested dependencies ({wwR |w ∈ T ∗}).

[HU79]

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 5

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (4)

Question: Is CFG powerful enough to describe all natural language
phenomena?

Answer: No. There are constructions in natural languages that cannot
be adequately described with a context-free grammar.

Example: cross-serial dependencies in Dutch and in Swiss German.

Dutch:

(1) ...
...

dat
that

Wim
Wim

Jan
Jan

Marie
Marie

de
the

kinderen
children

zag
saw

helpen
help

leren
teach

zwemmen
swim

‘ ... that Wim saw Jan help Marie teach the children to swim’

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 6

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (5)

Swiss German:

(2) ...
...

das
that

mer
we

em Hans
HansDat

es huus
houseAcc

hälfed
helped

aastriiche
paint

‘ ... that we helped Hans paint the house’

(3) ...
...

das
that

mer
we

d’chind
theachildrenAcc

em Hans
HansDat

es huus
houseAcc

lönd
let

hälfe
help

aastriiche
paint
‘ ... that we let the children help Hans paint the house’

Swiss German uses case marking and displays cross-serial
dependencies.

[Shi85] shows that Swiss German is not context-free.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 7

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (6)

If closure under homomorphisms and intersection with regular
languages is given, the following holds:

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww |w ∈ {a, b}∗}.

The copy language is not context-free.

Therefore we are interested in extensions of CFG in order to describe
all natural language phenomena.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 8

CFG and natural languages Polynomial extensions of CFG Basic Definitions

CFG and natural languages (7)

Idea [Jos85]: characterize the amount of context-sensitivity necessary
for natural languages.

Mildly context-sensitive formalisms have the following properties:

1 They generate (at least) all CFLs.
2 They can describe a limited amount of cross-serial dependencies.

In other words, there is a n ≥ 2 up to which the formalism can
generate all string languages {wn |w ∈ T ∗}.

3 They are polynomially parsable.
4 Their string languages are of constant growth.

In other words, the length of the words generated by the
grammar grows in a linear way, e.g., {a2n | n ≥ 0} does not have
that property.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 9

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Polynomial extensions of CFG (1)

Tree Adjoining Grammars (TAG), [JLT75, JS97]:

• Tree-rewriting grammar.
• Extension of CFG that allows to replace not only leaves but also
internal nodes with new trees.

• Can generate the copy language.

Example: TAG for the copy language

S

ε

SNA

a S

S∗NA a

SNA

b S

S∗NA b

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 10

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Polynomial extensions of CFG (2)
Example: TAG derivation of abab:

S

ε

SNA

a S

S∗NA a

;

SNA

a S

S∗NA

ε

a

SNA

a S

S∗NA

ε

a

SNA

b S

S∗NA b

;

SNA

a SNA

b S

S∗NA

S∗NA

ε

a

b

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 11

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Polynomial extensions of CFG (3)
Linear Context-free rewriting systems (LCFRS) and the equivalent
Multiple Context-Free Grammars (MCFG),
[VSWJ87, Wei88, SMFK91]

Idea: extension of CFG where non-terminals can span tuples of
non-adjacent strings.

Example: yield(A) = 〈anbn, cndn〉, with n ≥ 1.

The rewriting rules tell us how to compute the span of the lefthand
side non-terminal from the spans of the righthand side non-terminals.

A(ab, cd)→ ε A(aXb, cYd)→ A(X ,Y) S(XY)→ A(X ,Y)

Generated string language: {anbncndn | n ≥ 1}.

LCFRS is more powerful than TAG but still mildly context-sensitive.
Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 12

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Polynomial extensions of CFG (4)

Summary: �

�

�

�

�

�

�

�� ��CFG

TAG

LCFRS, MCFG

← mildly
context-sensitive

In this course, we are interested in mildly context-sensitive formalisms.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 13

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Languages (1)

Definition 1 (Alphabet, word, language)

1 An alphabet is a nonempty finite set X .
2 A string x1 . . . xn with n ≥ 1 and xi ∈ X for 1 ≤ i ≤ n is called a

nonempty word on the alphabet X . X+ is defined as the set of
all nonempty words on X .

3 A new element ε /∈ X+ is added: X ∗ := x+ ∪ {ε}.
For each w ∈ X ∗, the concatenation of w and ε is defined as
follows: wε = εw = w .
ε is called the empty word, and each w ∈ X ∗ is called a word on
X .

4 A set L is called a language iff there is an alphabet X such that
L ⊆ X ∗.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 14

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Languages (2)

Definition 2 (Homomorphism)

For two alphabets X and Y , a function f : X ∗ → Y ∗ is a
homomorphism iff for all v ,w ∈ X ∗: f (vw) = f (v)f (w).

Definition 3 (Length of a word)
Let X be an alphabet, w ∈ X ∗.

1 The length of w , |w | is defined as follows: if w = ε, then
|w | = 0. If w = xw ′ for some x ∈ X , then |w | = 1+ |w ′|.

2 For every a ∈ X , we define |w |a as the number of as occurring in
w : If w = ε, then |w |a = 0, if w = aw ′ then |w |a = |w ′|a + 1
and if w = bw ′ for some b ∈ X \ {a}, then |w |a = |w ′|a.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 15

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: CFG (1)

Definition 4 (Context-free grammar)

A context-free grammar (CFG) is a tuple G = 〈N,T ,P,S〉 such that
1 N and T are disjoint alphabets, the nonterminals and terminals

of G .
2 P ⊂ N × (N ∪ T)∗ is a finite set of productions (also called

rewriting rules). A production 〈A, α〉 is usually written A→ α.
3 S ∈ N is the start symbol.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 16

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: CFG (2)

Definition 5 (Language of a CFG)

Let G = 〈N,T ,P, S〉 be a CFG. The (string) language L(G) of G is
the set {w ∈ T ∗ |S ∗⇒ w} where

• for w ,w ′ ∈ (N ∪ T)∗: w ⇒ w ′ iff there is a A→ α ∈ P and
there are v , u ∈ (N ∪ T)∗ such that w = vAu and w ′ = vαu.

• ∗⇒ is the reflexive transitive closure of ⇒:
– w 0⇒ w for all w ∈ (N ∪ T)∗, and
– for all w ,w ′ ∈ (N ∪ T)∗: w n⇒ w ′ iff there is a v such that

w ⇒ v and v n−1⇒ w ′.
– for all w ,w ′ ∈ (N ∪ T)∗: w ∗⇒ w ′ iff there is a i ∈ N such that

w i⇒ w ′.

A language L is called context-free iff there is a CFG G such that
L = L(G).

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 17

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: CFG (3)

Proposition 1 (Pumping lemma for context-free languages)
Let L be a context-free language. Then there is a constant c such
that for all w ∈ L with |w | ≥ c: w = xv1yv2z with

• |v1v2| ≥ 1,
• |v1yv2| ≤ c, and
• for all i ≥ 0: xv i

1yv i
2z ∈ L.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 18

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: CFG (4)

Proposition 2
Context-free languages are closed under homomorphisms, i.e., for
alphabets T1,T2 and for every context-free language L1 ⊂ T ∗1 and
every homomorphism h : T ∗1 → T ∗2 , h(L1) = {h(w) |w ∈ L1} is a
context-free language.

Proposition 3
Context-free languages are closed under intersection with regular
languages, i.e., for every context-free language L and every regular
language Lr , L ∩ Lr is a context-free language.

Proposition 4
The copy language {ww |w ∈ {a, b}∗} is not context-free.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 19

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (1)

Definition 6 (Directed Graph)

1 A directed graph is a pair 〈V ,E 〉 where V is a finite set of
vertices and E ⊆ V × V is a set of edges.

2 For every v ∈ V , we define the in-degree of v as
|{v ′ ∈ V | 〈v ′, v〉 ∈ E}| and the out-degree of v as
|{v ′ ∈ V | 〈v , v ′〉 ∈ E}|.

E+ is the transitive closure of E and E ∗ is the reflexive transitive
closure of E .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 20

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (2)

Definition 7 (Tree)

A tree is a triple γ = 〈V ,E , r〉 such that

• 〈V ,E 〉 is a directed graph and r ∈ V is a special node, the root
node.

• γ contains no cycles, i.e., there is no v ∈ V such that
〈v , v〉 ∈ E+,

• only the root r ∈ V has in-degree 0,
• every vertex v ∈ V is accessible from r , i.e., 〈r , v〉 ∈ E ∗, and
• all nodes v ∈ V − {r} have in-degree 1.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are
also called nodes.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 21

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (3)

Definition 8 (Ordered Tree)
A tree is ordered if it has an additional linear precedence relation
≺∈ V × V such that

• ≺ is irreflexive, antisymmetric and transitive,
• for all v1, v2 with {〈v1, v2〉, 〈v2, v1〉} ∩ E ∗ = ∅: either v1 ≺ v2 or

v2 ≺ v1 and if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2 or a
〈v4, v2〉 ∈ E with v1 ≺ v4, then v1 ≺ v2, and

• nothing else is in ≺.

We use Gorn addresses for nodes in ordered trees: The root address is
ε, and the jth child of a node with address p has address pj .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 22

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (4)

Definition 9 (Labeling)
A labeling of a graph γ = 〈V ,E 〉 over a signature 〈A1,A2〉 is a pair of
functions l : V → A1 and g : E → A2 with A1,A2 possibly distinct.

Definition 10 (Syntactic tree)
Let N and T be disjoint alphabets of non-terminal and terminal
symbols. A syntactic tree (over N and T) is an ordered finite labeled
tree such that l(v) ∈ N for each vertex v with out-degree at least 1
and l(v) ∈ (N ∪ T ∪ {ε}) for each leaf v .

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 23

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (5)

Definition 11 (Tree Language of a CFG)
Let G = 〈N,T ,P, S〉 be a CFG.

1 A syntactic tree 〈V ,E , r〉 over N and T is a parse tree in G iff
• l(v) ∈ (T ∪ {ε}) for each leaf v ,
• for every v0, v1, . . . , vn ∈ V , n ≥ 1 such that 〈v0, vi〉 ∈ E for

1 ≤ i ≤ n and 〈vi , vi+1〉 ∈≺ for 1 ≤ i < n,
l(v0)→ l(v1) . . . l(vn) ∈ P.

2 A parse tree 〈V ,E , r〉 is a derivation tree in G iff l(r) = S.
3 The tree language of G is

LT (G) = {γ | γ is a derivation tree in G}

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 24

CFG and natural languages Polynomial extensions of CFG Basic Definitions

Basic Definitions: Trees (6)

Definition 12 (Weak and Strong Equivalence)

Let F1, F2 be two grammar formalisms.

• F1 and F2 are weakly equivalent iff for each instance G1 of F1
there is an instance G2 of F2 that generates the same string
language and vice versa.

• F1 and F2 are strongly equivalent iff for both formalisms the
notion of a tree language is defined and, furthermore, for each
instance G1 of F1 there is an instance G2 of F2 that generates the
same tree language and vice versa.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 25

References I
[HU79] John E. Hopcroft and Jeffrey D. Ullman.

Introduction to Automata Theory, Languages and Computation.
Addison Wesley, 1979.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
Tree Adjunct Grammars.
Journal of Computer and System Science, 10:136–163, 1975.

[Jos85] Aravind K. Joshi.
Tree adjoining grammars: How much contextsensitivity is required to provide reasonable structural
descriptions?
In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural Language Parsing, pages 206–250. Cambridge
University Press, 1985.

[JS97] Aravind K. Joshi and Yves Schabes.
Tree-Adjoning Grammars.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, pages 69–123. Springer, Berlin,
1997.

[Kal10] Laura Kallmeyer.
Parsing Beyond Context-Free Grammars.
Cognitive Technologies. Springer, Heidelberg, 2010.

[SBMSN87] Walter J. Savitch, Emmon Bach, William Marxh, and Gila Safran-Naveh, editors.
The Formal Complexity of Natural Language.
Studies in Linguistics and Philosophy. Reidel, Dordrecht, Holland, 1987.

[Shi85] Stuart M. Shieber.
Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8:333–343, 1985.
Reprinted in [SBMSN87].

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 26

References II

[SMFK91] Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229, 1991.

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
Characterizing structural descriptions produced by various grammatical formalisms.
In Proceedings of ACL, Stanford, 1987.

[Wei88] David J. Weir.
Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, 1988.

Kallmeyer, Bladier | SS 2018 Parsing Beyond CFG: Introduction 27

	CFG and natural languages
	Polynomial extensions of CFG
	Basic Definitions
	Appendix

