
Parsing Beyond CFG Homework 5: TAG Earley Parsing, Abgabe 29.05.2013

Laura Kallmeyer, Patrick Hommers

SS 2013, Heinrich-Heine-Universität Düsseldorf

Question 1 (TAG Earley parsing)

Consider again the TAG consisting of the two trees α and β :

Give the trace of the Earley parse (the version from the course slides) of w = abc. Give only those items that lead to the correct parse. Explain for each of these items, by which operation it is obtained and from which antecedent item(s).

Solution:

	Item	dotted tree	rule
1.	$\left[\alpha_1, \epsilon, la, 0, -, -, 0, 0\right]$	s T	Initialize
2.	$[\beta,\epsilon,la,0,-,-,0,0]$	S* E	PredictAdjoinable
3.	$[\beta,\epsilon,lb,0,-,-,0,0]$	S* C	PredictNoAdj
4.	$[\beta, 1, la, 0, -, -, 0, 0]$	•s* c	MoveDown
5.	$[\beta, 1, lb, 0, -, -, 0, 0]$	•S* c	PredictNoAdj
6.	$[\alpha_1, \epsilon, lb, 0, -, -, 0, 0]$	a T	PredictAdjoined
7.	$[\alpha_1, 1, la, 0, -, -, 0, 0]$	•a T	MoveDown
8.	$[\alpha_1, 1, ra, 0, -, -, 1, 0]$	a S T	ScanTerm
9.	$[\alpha_1, 2, la, 0, -, -, 1, 0]$	s T	MoveRight
10.	$[\alpha_1, 2, lb, 1, -, -, 1, 0]$	a T	PredictNoAdj
11.	$[\alpha_2, \epsilon, la, 1, -, -, 1, 0]$	•T b	PredictSubs
12.	$[\alpha_2, \epsilon, lb, 1, -, -, 1, 0]$	•T b	PredictNoAdj

13.	$[\alpha_2, 1, la, 1, -, -, 1, 0]$	T •b	MoveDown
14.	$[\alpha_2, 1, ra, 1, -, -, 2, 0]$	T b•	ScanTerm
15.	$[\alpha_2,\epsilon,rb,1,-,-,2,0]$	T• b	MoveUp
16.	$[\alpha_2,\epsilon,ra,1,-,-,2,0]$	T• b	CompleteNode
17.	$[\alpha_1, 2, rb, 1, -, -, 2, 0]$	a T.	Substitute 16. and 10.
18.	$[\alpha_1, 2, ra, 0, -, -, 2, 0]$	a T•	CompleteNode
19.	$[\alpha_1, \epsilon, rb, 0, -, -, 2, 0]$	$\operatorname{a} \operatorname{S}_{\operatorname{T}}$	MoveUp
20.	$[\beta, 1, rb, 0, 0, 2, 2, 0]$	S.*	CompleteFood
21.	$[\beta, 1, ra, 0, 0, 2, 2, 0]$	S•*	CompleteNode
22.	$[\beta, 2, la, 0, 0, 2, 2, 0]$	S* c	MoveRight
23.	$[\beta, 2, ra, 0, 0, 2, 3, 0]$	S* c•	ScanTerm
24.	$[\beta,\epsilon,rb,0,0,2,3,0]$	S* E	MoveUp
25.	$[\beta,\epsilon,ra,0,0,2,3,0]$	S* E	CompleteNode
26.	$[\alpha_1, \epsilon, rb, 0, -, -, 3, 1]$	a S	Adjoin 25. and 19.
27.	$[\alpha_1, \epsilon, ra, 0, -, -, 3, 0]$	a S T	CompleteNode
	·		· · · · · · · · · · · · · · · · · · ·

Question 2 Consider the rule Substitute of the Earley TAG parser from the course slides. Give an alternative rule CompleteSubstitution that moves also from the tree α back into γ and that checks, in addition, that there exists a γ item that has triggered the prediction of the substitution of α .

Solution:

Question 3 What is the time complexity (in the length n of the input word) of the Earley TAG parser given in the course slides?

Solution:

The rules have at most 6 different indices ranging from 0 to n. Consequently, the complexity is $\mathcal{O}(n^6)$.