
Kallmeyer, Hommers Sommersemester 2013

Parsing Beyond Context-Free Grammars:

Introduction

Laura Kallmeyer, Patrick Hommers

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2013

Parsing Beyond CFG 1 Introduction

Kallmeyer, Hommers Sommersemester 2013

Overview

1. CFG and natural languages

2. Polynomial extensions of CFG

3. Basic definitions

[Kal10]

Parsing Beyond CFG 2 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (1)

A context-free grammar (CFG) is a set of rewriting rules that tell

us how to replace a non-terminal by a sequence of non-terminal and

terminal symbols.

Example:

S → a S b S → ab

The string language generated by this grammar is {anbn |n ≥ 1}.

Parsing Beyond CFG 3 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (2)

Sample CFG Gtelescope:

S → NP VP NP → D N

VP → VP PP | V NP N → N PP

PP → P NP

N → man | girl | telescope D → the

N → John P → with

V → saw

Parsing Beyond CFG 4 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (3)

Context-free languages (CFLs)

• can be recognized in polynomial time (O(n3));

• are accepted by push-down automata;

• have nice closure properties (e.g., closure under

homomorphisms, intersection with regular languages . . .);

• satisfy a pumping lemma;

• can describe nested dependencies ({wwR |w ∈ T ∗}).

[HU79]

Parsing Beyond CFG 5 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (4)

Question: Is CFG powerful enough to describe all natural language

phenomena?

Answer: No. There are constructions in natural languages that

cannot be adequately described with a context-free grammar.

Example: cross-serial dependencies in Dutch and in Swiss German.

Dutch:

(1)

... dat Wim Jan Marie de kinderen zag helpen leren zwemmen

... that Wim Jan Marie the children saw help teach swim

‘... that Wim saw Jan help Marie teach the children to swim’

Parsing Beyond CFG 6 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (5)

Swiss German:

(2)

... das mer em Hans es huus hälfed aastriiche

... that we HansDat houseAcc helped paint

‘... that we helped Hans paint the house’

(3)

... das mer d’chind em Hans es huus lönd hälfe aastriiche

... that we the childrenAcc HansDat houseAcc let help paint

‘... that we let the children help Hans paint the house’

Swiss German uses case marking and displays cross-serial

dependencies.

[Shi85] shows that Swiss German is not context-free.

Parsing Beyond CFG 7 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (6)

If closure under homomorphisms and intersection with regular

languages is given, the following holds:

A formalism that can generate cross-serial dependencies can also

generate the copy language {ww |w ∈ {a, b}∗}.

The copy language is not context-free.

Therefore we are interested in extensions of CFG in order to

describe all natural language phenomena.

Parsing Beyond CFG 8 Introduction

Kallmeyer, Hommers Sommersemester 2013

CFG and natural languages (7)

Idea [Jos85]: characterize the amount of context-sensitivity

necessary for natural languages.

Mildly context-sensitive formalisms have the following properties:

1. They generate (at least) all CFLs.

2. They can describe a limited amount of cross-serial

dependencies.

In other words, there is a n ≥ 2 up to which the formalism can

generate all string languages {wn |w ∈ T ∗}.

3. They are polynomially parsable.

4. Their string languages are of constant growth.

In other words, the length of the words generated by the

grammar grows in a linear way, e.g., {a2
n

|n ≥ 0} does not

have that property.

Parsing Beyond CFG 9 Introduction

Kallmeyer, Hommers Sommersemester 2013

Polynomial extensions of CFG (1)

Tree Adjoining Grammars (TAG), [JLT75, JS97]:

• Tree-rewriting grammar.

• Extension of CFG that allows to replace not only leaves but

also internal nodes with new trees.

• Can generate the copy language.

Example: TAG for the copy language

S

ǫ

SNA

a S

S∗NA a

SNA

b S

S∗NA b

Parsing Beyond CFG 10 Introduction

Kallmeyer, Hommers Sommersemester 2013

Polynomial extensions of CFG (2)

Example: TAG derivation of abab:

S

ǫ

SNA

a S

S∗

NA a

;

SNA

a S

S∗

NA a

ǫ

SNA

a S

S∗

NA a

ǫ

SNA

b S

S∗

NA b

;

SNA

a SNA

b S

S∗

NA b

S∗

NA a

ǫ

Parsing Beyond CFG 11 Introduction

Kallmeyer, Hommers Sommersemester 2013

Polynomial extensions of CFG (3)

Linear Context-free rewriting systems (LCFRS) and the equivalent

Multiple Context-Free Grammars (MCFG),

[VSWJ87, Wei88, SMFK91]

Idea: extension of CFG where non-terminals can span tuples of

non-adjacent strings.

Example: yield(A) = 〈anbn, cndn〉, with n ≥ 1.

The rewriting rules tell us how to compute the span of the lefthand

side non-terminal from the spans of the righthand side

non-terminals.

A(ab, cd) → ε A(aXb, cY d) → A(X, Y) S(XY) → A(X, Y)

Generated string language: {anbncndn |n ≥ 1}.

LCFRS is more powerful than TAG but still mildly

context-sensitive.

Parsing Beyond CFG 12 Introduction

Kallmeyer, Hommers Sommersemester 2013

Polynomial extensions of CFG (6)

Summary: '

&

$

%

'

&

$

%

�
 �	CFG

TAG

LCFRS, MCFG

mildly

context-sensitive

In this course, we are interested in mildly context-sensitive

formalisms.

Parsing Beyond CFG 13 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Languages (1)

Definition 1 (Alphabet, word, language)

1. An alphabet is a nonempty finite set X.

2. A string x1 . . . xn with n ≥ 1 and xi ∈ X for 1 ≤ i ≤ n is called

a nonempty word on the alphabet X. X+ is defined as the set

of all nonempty words on X.

3. A new element ε /∈ X+ is added: X∗ := x+ ∪ {ε}.

For each w ∈ X∗, the concatenation of w and ε is defined as

follows: wε = εw = w.

ε is called the empty word, and each w ∈ X∗ is called a word

on X.

4. A set L is called a language iff there is an alphabet X such that

L ⊆ X∗.

Parsing Beyond CFG 14 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Languages (2)

Definition 2 (Homomorphism)

For two alphabets X and Y , a function f : X∗ → Y ∗ is a

homomorphism iff for all v, w ∈ X∗: f(vw) = f(v)f(w).

Definition 3 (Length of a word) Let X be an alphabet, w ∈ X∗.

1. The length of w, |w| is defined as follows: if w = ε, then

|w| = 0. If w = xw′ for some x ∈ X, then |w| = 1 + |w′|.

2. For every a ∈ X, we define |w|a as the number of as occurring

in w: If w = ε, then |w|a = 0, if w = aw′ then |w|a = |w′|a + 1

and if w = bw′ for some b ∈ X \ {a}, then |w|a = |w′|a.

Parsing Beyond CFG 15 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: CFG (1)

Definition 4 (Context-free grammar)

A context-free grammar (CFG) is a tuple G = 〈N, T, P, S〉 such that

1. N and T are disjoint alphabets, the nonterminals and terminals

of G,

2. P ⊂ N × (N ∪ T)∗ is a finite set of productions (also called

rewriting rules). A production 〈A, α〉 is usually written A → α.

3. S ∈ N is the start symbol.

Parsing Beyond CFG 16 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: CFG (2)

Definition 5 (Language of a CFG)

Let G = 〈N, T, P, S〉 be a CFG. The (string) language L(G) of G is

the set {w ∈ T ∗ |S
∗

⇒ w} where

• for w,w′ ∈ (N ∪ T)∗: w ⇒ w′ iff there is a A → α ∈ P and

there are v, u ∈ (N ∪ T)∗ such that w = vAu and w′ = vαu.

•
∗

⇒ is the reflexive transitive closure of ⇒:

– w
0
⇒ w for all w ∈ (N ∪ T)∗, and

– for all w,w′ ∈ (N ∪ T)∗: w
n
⇒ w′ iff there is a v such that

w ⇒ v and v
n−1
⇒ w′.

– for all w,w′ ∈ (N ∪ T)∗: w
∗

⇒ w′ iff there is a i ∈ IN such

that w
i
⇒ w′.

A language L is called context-free iff there is a CFG G such that

L = L(G).

Parsing Beyond CFG 17 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: CFG (3)

Proposition 1 (Pumping lemma for context-free languages)

Let L be a context-free language. Then there is a constant c such

that for all w ∈ L with |w| ≥ c: w = xv1yv2z with

• |v1v2| ≥ 1,

• |v1yv2| ≤ c, and

• for all i ≥ 0: xvi1yv
i
2z ∈ L.

Parsing Beyond CFG 18 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: CFG (4)

Proposition 2 Context-free languages are closed under

homomorphisms, i.e., for alphabets T1, T2 and for every context-free

language L1 ⊂ T ∗

1 and every homomorphism h : T ∗

1 → T ∗

2 ,

h(L1) = {h(w) |w ∈ L1} is a context-free language.

Proposition 3 Context-free languages are closed under

intersection with regular languages, i.e., for every context-free

language L and every regular language Lr, L ∩ Lr is a context-free

language.

Proposition 4 The copy language {ww |w ∈ {a, b}∗} is not

context-free.

Parsing Beyond CFG 19 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (1)

Definition 6 (Directed Graph)

1. A directed graph is a pair 〈V,E〉 where V is a finite set of

vertices and E ⊆ V × V is a set of edges.

2. For every v ∈ V , we define the in-degree of v as

|{v′ ∈ V | 〈v′, v〉 ∈ E}| and the out-degree of v as

|{v′ ∈ V | 〈v, v′〉 ∈ E}|.

E+ is the transitive closure of E and E∗ is the reflexive transitive

closure of E.

Parsing Beyond CFG 20 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (2)

Definition 7 (Tree)

A tree is a triple γ = 〈V,E, r〉 such that

• 〈V,E〉 is a directed graph and r ∈ V is a special node, the root

node.

• γ contains no cycles, i.e., there is no v ∈ V such that

〈v, v〉 ∈ E+,

• only the root r ∈ V has in-degree 0,

• every vertex v ∈ V is accessible from r, i.e., 〈r, v〉 ∈ E∗, and

• all nodes v ∈ V − {r} have in-degree 1.

A vertex with out-degree 0 is called a leaf. The vertices in a tree are

also called nodes.

Parsing Beyond CFG 21 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (3)

Definition 8 (Ordered Tree) A tree is ordered if it has an

additional linear precedence relation ≺∈ V × V such that

• ≺ is irreflexive, antisymmetric and transitive,

• for all v1, v2 with {〈v1, v2〉, 〈v2, v1〉} ∩ E∗ = ∅: either v1 ≺ v2 or

v2 ≺ v1 and if there is either a 〈v3, v1〉 ∈ E with v3 ≺ v2 or a

〈v4, v2〉 ∈ E with v1 ≺ v4, then v1 ≺ v2, and

• nothing else is in ≺.

We use Gorn addresses for nodes in ordered trees: The root address

is ε, and the jth child of a node with address p has address pj.

Parsing Beyond CFG 22 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (4)

Definition 9 (Labeling) A labeling of a graph γ = 〈V,E〉 over a

signature 〈A1, A2〉 is a pair of functions l : V → A1 and g : E → A2

with A1, A2 possibly distinct.

Definition 10 (Syntactic tree) Let N and T be disjoint

alphabets of non-terminal and terminal symbols. A syntactic tree

(over N and T) is an ordered finite labeled tree such that l(v) ∈ N

for each vertex v with out-degree at least 1 and l(v) ∈ (N ∪ T ∪ {ε})

for each leaf v.

Parsing Beyond CFG 23 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (5)

Definition 11 (Tree Language of a CFG) Let G = 〈N, T, P, S〉

be a CFG.

1. A syntactic tree 〈V,E, r〉 over N and T is a parse tree in G iff

• l(v) ∈ (T ∪ {ε}) for each leaf v,

• for every v0, v1, . . . , vn ∈ V , n ≥ 1 such that 〈v0, vi〉 ∈ E for

1 ≤ i ≤ n and 〈vi, vi+1〉 ∈≺ for 1 ≤ i < n,

l(v0) → l(v1) . . . l(vn) ∈ P .

2. A parse tree 〈V,E, r〉 is a derivation tree in G iff l(r) = S.

3. The tree language of G is

LT (G) = {γ | γ is a derivation tree in G}

Parsing Beyond CFG 24 Introduction

Kallmeyer, Hommers Sommersemester 2013

Basic Definitions: Trees (6)

Definition 12 (Weak and Strong Equivalence)

Let F1, F2 be two grammar formalisms.

• F1 and F2 are weakly equivalent iff for each instance G1 of F1

there is an instance G2 of F2 that generates the same string

language and vice versa.

• F1 and F2 are strongly equivalent iff for both formalisms the

notion of a tree language is defined and, furthermore, for each

instance G1 of F1 there is an instance G2 of F2 that generates

the same tree language and vice versa.

Parsing Beyond CFG 25 Introduction

Kallmeyer, Hommers Sommersemester 2013

References

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction

to Automata Theory, Languages and Computation.

Addison Wesley, 1979.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako

Takahashi. Tree Adjunct Grammars. Journal of

Computer and System Science, 10:136–163, 1975.

[Jos85] Aravind K. Joshi. Tree adjoining grammars: How

much contextsensitivity is required to provide

reasonable structural descriptions? In D. Dowty,

L. Karttunen, and A. Zwicky, editors, Natural

Language Parsing, pages 206–250. Cambridge

University Press, 1985.

[JS97] Aravind K. Joshi and Yves Schabes. Tree-Adjoning

Parsing Beyond CFG 26 Introduction

Kallmeyer, Hommers Sommersemester 2013

Grammars. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, pages 69–123.

Springer, Berlin, 1997.

[Kal10] Laura Kallmeyer. Parsing Beyond Context-Free

Grammars. Cognitive Technologies. Springer,

Heidelberg, 2010.

[SBMSN87] Walter J. Savitch, Emmon Bach, William Marxh, and

Gila Safran-Naveh, editors. The Formal Complexity of

Natural Language. Studies in Linguistics and

Philosophy. Reidel, Dordrecht, Holland, 1987.

[Shi85] Stuart M. Shieber. Evidence against the

context-freeness of natural language. Linguistics and

Philosophy, 8:333–343, 1985. Reprinted in [SBMSN87].

[SMFK91] Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii,

and Tadao Kasami. On multiple context-free

Parsing Beyond CFG 27 Introduction

Kallmeyer, Hommers Sommersemester 2013

grammars. Theoretical Computer Science,

88(2):191–229, 1991.

[VSWJ87] K. Vijay-Shanker, David J. Weir, and Aravind K.

Joshi. Characterizing structural descriptions produced

by various grammatical formalisms. In Proceedings of

ACL, Stanford, 1987.

[Wei88] David J. Weir. Characterizing Mildly

Context-Sensitive Grammar Formalisms. PhD thesis,

University of Pennsylvania, 1988.

Parsing Beyond CFG 28 Introduction

