Parsing Unger's Parser

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2016/17

Spinnight Spinn NRICH HEINE UNIVERSITÄT DÜSSELDORF

Table of contents

2 Th[e Parser](#page-14-0)

3 [An Example](#page-0-0)

4 [Optimizations](#page-0-0)

Unger's parser (Grune and Jacobs, 2008) is a CFG parser that is

- **a** top-down parser: we start with S and subsequently replace lefthand sides of productions with righthand sides
- **a** non-directional parser: the expanding of non-terminals (with appropriate righthand sides) is not ordered; therefore we need to guess the yields of all non-terminals in a right-hand side at once

Introduction (2)

 $G = \langle N, T, P, S \rangle, N = \{S, NP, VP, PP, V, \ldots\}, T =$ ${Mary, man, telescope, \ldots},$ productions: $S \rightarrow NP VP, VP \rightarrow VP PP,$ $VP \rightarrow V NP$, $NP \rightarrow Mary$, ...

Input: Mary sees the man with the telescope

. .

.

Introduction (3)

Parsing strategy:

- **E** The parser takes an $X \in N \cup T$ and a substring w of the input.
- Initially, this is S and the entire input.
- If X and the remaining substring are equal, we can stop (success for X and w).
- \blacksquare Otherwise, X must be a non-terminal that can be further expanded. We then choose an X-production and partition w into further substrings that are paired with the righthand side elements of the production.
- \blacksquare The parser continues recursively.

The parser (1)

Assume CFG without $\epsilon\text{-}$ productions and without loops $A\stackrel{+}{\Rightarrow}A$

```
function unger(w, X):
out := false;
if w = X, then out := true
else for all X \rightarrow X_1 \dots X_k:
      for all x_1, ..., x_k \in T^+ with w = x_1...x_k:
           if \bigwedge_{i=1}^kunger(x_i, X_i)then out := true;
return out
```
The following holds:

$$
unger(w, X) iff X \stackrel{*}{\Rightarrow} w (for X \in N \cup T, w \in T^*)
$$

Extension to deal with ϵ -productions and loops:

- Add a list of preceding calls
- \blacksquare pass this list when calling the parser again
- if the new call is already on the list, stop and return false

Initial call: $\text{unger}(w, S, \emptyset)$

```
function unger(w, X, L):
 out := false:
 if \langle X, w \rangle \in L, return out;
 else if w = X or (w = \epsilon \text{ and } X \to \epsilon \in P)then out := true
 else for all X \to X_1 \dots X_k \in P:
        for all x_1, ..., x_k \in T^* with w = x_1...x_k:
              if \bigwedge_{i=1}^k \text{unger}(x_i, X_i, L \cup \{\langle X, w \rangle\})then out := true;
 return out
```
The parser (4)

- So far, we have a recognizer, not a parser.
- \blacksquare To turn this into a parser, every call unger(..) must return a (set of) parse trees.
- \blacksquare This can be obtained from
	- **1** the succssful productions $X \to X_1 \dots X_k$, and
	- **2** the parse trees returned by the calls $\text{unger}(x_i, X_i)$.
- Note, however, that there might be a large amount of parse trees since in each call, there might be more than one successful production.
- We will come back to the compact presentation of several analyses in a parse forest.
- **Assume a CFG without** ε **-productions**
- **Production** $S \to NP VP$
- **Input sentence w with** $|w| = 34$ **:**

Mr. Sarkozy's pension reform, which only affects about 500,000 public sector employees, is the opening salvo in a series of measures aimed more broadly at rolling back France's system of labor protections.

(New York Times)

An example (2)

Partitions according to Unger's parser:

 $|w| = 34$, consequently we have 33 different partitions.

■ Consider the following partition for $S \rightarrow NP VP$:

- For $NP \rightarrow NP S$, there are 12 partitions of the NP part
- \blacksquare The partition above is just one partition for one production!
- In the worst case, parsing is exponential in the length n of the input string!

A note about time complexity

Time complexity

We say that an algorithm is of

polynomial time complexity if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq cn^k$.

Notation: $\mathcal{O}(n^k)$

Exponential time complexity if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq ck^n$.

Notation: $\mathcal{O}(k^n)$

As an additional filter, we can constrain the set of partitions that we investigate:

- Check on occurrences of terminals in rhs.
- Check on minimal length of terminal string derived by a nonterminal.
- Check on obligatory terminals (pre-terminals) in strings derived by non-terminals, e.g., each NP contains an N, each VP contains a V, \ldots
- \blacksquare Check on the first terminals derivable from a non-terminal.

Furthermore, we can use tabulation (dynamic programming) in order to avoid computing several times the same thing:

- Whenever unger (X, w, L) yields a result res, we store $\langle X, w, \text{res} \rangle$ in our table of partial parsing results.
- **2** In every call unger (X, w, L) , we first check whether we have already computed a result $\langle X, w, res \rangle$ and if so, we stop immediately and return res.

Optimizations (3)

Results $\langle X, w, res \rangle$ can be stored in a three-dimensional table (chart) \mathcal{C} :

- Assume $k = |N + T|$ and non-terminals N and terminals T to have a unique index $\leq k$. Furthermore, assume $|w| = n$ with $w = w_1 \cdots w_n$, then you can use a $k \times n \times n$ table, the chart!
	- \bullet Whenever ${\rm unger}\,(X,w_i\cdots w_j,\;\;L)$ yields a result *res* and m index of X, then $C(m, i, j) = res$
	- \bullet In every call $\mathrm{unger}\,(X,w_i\cdots w_j,\,\,\, L)$, we first check whether we have already a value in $\mathcal{C}(m, i, j)$ and if so, we stop and return $C(m, i, j)$
- Advantage: access of $\mathcal{C}(m, i, j)$ in constant time.
- Disadvantage: storing the Chart needs more memory.
- Assumption: grammar is ε -free otherwise we need a $k \times (n+1) \times (n+1)$ chart.

Optimizations (4)

Example

- $G = \langle N, T, P, S \rangle, N = \{S, B\}, T = \{a, b, c\}$ and productions $S \to aSB \mid c \quad B \to bb$
- Input word $w = acbb$.
- We assume that, when guessing the span of a rhs element, we take into account that . . .
	- ¹ each terminal spans only a corresponding single terminal
	- \bullet the span of an S has to start with an a or a c
	- \bullet the span of a B has to start with a b
	- \bullet the span of each $X \in N \cup T$ contains at least one symbol (no ε-productions)

Optimizations (5)

Example continued

(Productions: $S \rightarrow aSB \mid c \quad B \rightarrow bb$)

Optimizations (6)

In addition, we can tabulate entire productions with the spans of their different symbols. This gives us a compact presentation of the parse forest!

- In every call $\mathrm{unger}\,(X,w_i\cdots w_j)$, we first check whether we have already a value in $\mathcal{C}(m, i, j)$ and if so, we stop and return $\mathcal{C}(m, i, j)$.
- \blacksquare Otherwise, we compute all possible first steps of derivations $X \stackrel{*}{\Rightarrow} w$: for every production $X \to X_1 \dots X_k$ and all w_1, \dots, w_k such that the recursive Unger calls yield true, we add $\langle X, w \rangle \rightarrow$ $\langle X_1, w_1 \rangle \dots \langle X_k, w_k \rangle$ with the indices of the spans to the list of productions.
- If at least one such production has been found, we return true, otherwise false.

Example on handout.

Unger's parser is

- a non-directional top-down parser.
- highly non-deterministic because during parsing, the yields of all non-terminals in righthand sides must be guessed.
- \blacksquare in general of exponential (time) complexity.
- \blacksquare of polynomial time complexity if tabulation is applied.

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide. Monographs in Computer Science. Springer. Second Edition.