
Parsing
Unger’s Parser

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2016/17

1 / 21

Table of contents

1 Introduction

2 �e Parser

3 An Example

4 Optimizations

5 Conclusion

2 / 21

Introduction (1)

Unger’s parser (Grune and Jacobs, 2008) is a CFG parser that is

a top-down parser: we start with S and subsequently replace
le�hand sides of productions with righthand sides

a non-directional parser: the expanding of non-terminals (with
appropriate righthand sides) is not ordered; therefore we need
to guess the yields of all non-terminals in a right-hand side at
once

3 / 21

Introduction (2)

G = 〈N , T , P, S〉, N = {S,NP,VP, PP,V , . . .}, T =
{Mary,man, telescope, . . .}, productions: S → NP VP , VP → VP PP ,
VP → V NP , NP → Mary, . . .

Input: Mary sees the man with the telescope

1. S Mary sees the man with the telescope
2. NP Mary S → NP VP (1.)
3. VP sees the man with the telescope
4. NP Mary sees S → NP VP (1.)
5. VP the man with the telescope

...
14. Mary Mary NP → Mary (2.)
15. VP sees VP → VP PP (3.)
16. PP the man with the telescope
17. VP sees the VP → VP PP (3.)
18. PP man with the telescope

...
4 / 21

Introduction (3)

Parsing strategy:

�e parser takes an X ∈ N ∪ T and a substring w of the input.

Initially, this is S and the entire input.

If X and the remaining substring are equal, we can stop (suc-
cess for X and w).

Otherwise, X must be a non-terminal that can be further ex-
panded. We then choose an X -production and partition w into
further substrings that are paired with the righthand side ele-
ments of the production.

�e parser continues recursively.

5 / 21

�e parser (1)

Assume CFG without ε-productions and without loops A +⇒ A

function unger(w,X):
out := false;
if w = X, then out := true
else for all X → X1 . . .Xk:

for all x1, . . . , xk ∈ T+ with w = x1 . . . xk:
if

∧k
i=1unger(xi,Xi)

then out := true;
return out

�e following holds:

unger(w,X) i� X ∗⇒ w (for X ∈ N ∪ T ,w ∈ T∗)

6 / 21

�e parser (2)

Extension to deal with ε-productions and loops:
Add a list of preceding calls
pass this list when calling the parser again
if the new call is already on the list, stop and return false

Initial call: unger(w, S, ∅)

7 / 21

�e parser (3)

function unger(w,X,L):
out := false;
if 〈X ,w〉 ∈ L, return out;
else if w = X or (w = ε and X → ε ∈ P)

then out := true
else for all X → X1 . . .Xk ∈ P:

for all x1, . . . , xk ∈ T∗ with w = x1 . . . xk:
if

∧k
i=1unger(xi,Xi, L ∪ {〈X ,w〉})

then out := true;
return out

8 / 21

�e parser (4)

So far, we have a recognizer, not a parser.

To turn this into a parser, every call unger(..) must return a
(set of) parse trees.

�is can be obtained from
1 the succssful productions X → X1 . . .Xk , and
2 the parse trees returned by the calls unger(xi,Xi).

Note, however, that there might be a large amount of parse
trees since in each call, there might be more than one success-
ful production.

We will come back to the compact presentation of several anal-
yses in a parse forest.

9 / 21

An example (1)

Assume a CFG without ε-productions
Production S → NP VP

Input sentence w with |w| = 34:

Mr. Sarkozy’s pension reform, which only a�ects about 500,000 public
sector employees, is the opening salvo in a series of measures aimed
more broadly at rolling back France’s system of labor protections.

(New York Times)

10 / 21

An example (2)

Partitions according to Unger’s parser:

S
NP VP

1. Mr. Sarkozy’s . . . protections
2. Mr. Sarkozy ’s . . . protections
3. Mr. Sarkozy’s pension . . . protections

...
33. Mr. . . . labor protections

|w| = 34, consequently we have 33 di�erent partitions.

11 / 21

An example (3)

Consider the following partition for S → NP VP :

S
NP Mr. Sarkozy’s pension reform, which . . . employees,
VP is . . . protections

For NP → NP S, there are 12 partitions of the NP part
�e partition above is just one partition for one production!
In the worst case, parsing is exponential in the length n of the
input string!

12 / 21

A note about time complexity

Time complexity
We say that an algorithm is of

polynomial time complexity if there is a constant c and a k
such that the parsing of a string of length n takes an amount of
time ≤ cnk .

Notation: O(nk)

exponential time complexity if there is a constant c and a k
such that the parsing of a string of length n takes an amount of
time ≤ ckn.

Notation: O(kn)

13 / 21

Optimizations (1)

As an additional �lter, we can constrain the set of partitions that we
investigate:

Check on occurrences of terminals in rhs.

Check on minimal length of terminal string derived by a non-
terminal.

Check on obligatory terminals (pre-terminals) in strings de-
rived by non-terminals, e.g., each NP contains an N , each VP
contains a V , . . .

Check on the �rst terminals derivable from a non-terminal.

14 / 21

Optimizations (2)

Furthermore, we can use tabulation (dynamic programming) in order
to avoid computing several times the same thing:

1 Whenever unger(X, w, L) yields a result res, we store
〈X ,w, res〉 in our table of partial parsing results.

2 In every call unger(X, w, L), we �rst check whether we
have already computed a result 〈X ,w, res〉 and if so, we stop
immediately and return res.

15 / 21

Optimizations (3)

Results 〈X ,w, res〉 can be stored in a three-dimensional table (chart)
C:

Assume k = |N + T | and non-terminals N and terminals T to
have a unique index ≤ k. Furthermore, assume |w| = n with
w = w1 · · ·wn, then you can use a k × n× n table, the chart!

1 Whenever unger(X ,wi · · ·wj, L) yields a result res and m
index of X , then C(m, i, j) = res

2 In every call unger(X ,wi · · ·wj, L), we �rst check whether
we have already a value in C(m, i, j) and if so, we stop and
return C(m, i, j)

Advantage: access of C(m, i, j) in constant time.

Disadvantage: storing the Chart needs more memory.

Assumption: grammar is ε-free – otherwise we need a
k × (n+ 1)× (n+ 1) chart.

16 / 21

Optimizations (4)

Example
G = 〈N , T , P, S〉, N = {S,B}, T = {a, b, c} and productions
S → aSB | c B→ bb

Input word w = acbb.
We assume that, when guessing the span of a rhs element, we
take into account that . . .

1 each terminal spans only a corresponding single terminal
2 the span of an S has to start with an a or a c
3 the span of a B has to start with a b
4 the span of each X ∈ N ∪ T contains at least one symbol (no
ε-productions)

17 / 21

Optimizations (5)

Example continued
Chart obtained for w = acbb
j
4 〈S, t〉 〈B, t〉 〈b, t〉

〈B, f 〉
3 〈S, f 〉 〈b, t〉
2 〈S, t〉

〈c, t〉
1 〈a, t〉

1 2 3 4 i

S ∗⇒ acbb?→ t
a ∗⇒ a?→ t
S ∗⇒ c?→ t
c ∗⇒ c?→ t

B ∗⇒ bb?→ t
b ∗⇒ b?→ t
b ∗⇒ b?→ t

S ∗⇒ cb→ f
B ∗⇒ b→ f

(Productions: S → aSB | c B → bb)

18 / 21

Optimizations (6)

In addition, we can tabulate entire productions with the spans of their
di�erent symbols. �is gives us a compact presentation of the parse
forest!

In every call unger(X ,wi · · ·wj), we �rst check whether we
have already a value in C(m, i, j) and if so, we stop and return
C(m, i, j).
Otherwise, we compute all possible �rst steps of derivations
X ∗⇒ w: for every production X → X1 . . .Xk and all w1, . . . ,wk
such that the recursive Unger calls yield true, we add 〈X ,w〉 →
〈X1,w1〉 . . . 〈Xk,wk〉 with the indices of the spans to the list of
productions.
If at least one such production has been found, we return
true, otherwise false.

Example on handout.

19 / 21

Conclusion

Unger’s parser is

a non-directional top-down parser.
highly non-deterministic because during parsing, the yields of
all non-terminals in righthand sides must be guessed.
in general of exponential (time) complexity.
of polynomial time complexity if tabulation is applied.

20 / 21

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

21 / 21

	Introduction
	The Parser
	An Example
	Optimizations
	Conclusion

