Parsing

Unger’s Parser

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2016/17

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

21

Table of contents

@ Introduction
© The Parser
© An Example
@ Optimizations

© Conclusion

2/21

Introduction (1)

Unger’s parser (Grune and Jacobs, 2008) is a CFG parser that is

m a top-down parser: we start with S and subsequently replace
lefthand sides of productions with righthand sides

m a non-directional parser: the expanding of non-terminals (with
appropriate righthand sides) is not ordered; therefore we need
to guess the yields of all non-terminals in a right-hand side at
once

Introduction (2)

G = (N,T,P,S),N = {S,NP,VP,PP,V,..},T =
{Mary, man, telescope, . ..}, productions: S — NP VP, VP — VP PP,
VP — V NP, NP — Mary, ...

Input: Mary sees the man with the telescope

1. S Mary sees the man with the telescope

2. NP Mary S— NPVP(1.)
3. vp sees the man with the telescope

4. NP Mary sees S— NPVP(1.)
5. vp the man with the telescope

14. | Mary | Mary NP — Mary (2.)
15. | VP sees VP — VP PP (3.)
16. | PP the man with the telescope

17. | VP sees the VP — VP PP (3.)

18. | PP man with the telescope

Introduction (3)

Parsing strategy:

m The parser takes an X € N U T and a substring w of the input.
m Initially, this is S and the entire input.

m If X and the remaining substring are equal, we can stop (suc-
cess for X and w).

m Otherwise, X must be a non-terminal that can be further ex-
panded. We then choose an X-production and partition w into
further substrings that are paired with the righthand side ele-
ments of the production.

m The parser continues recursively.

The parser (1)
Assume CFG without e-productions and without loops A A

function unger(w,X):

out := false;
if w=X, then out := true
else for all X — X;... X;:
for all x,...,x € TT with w=1x...x:
if /\leunger(xi,)(i)
then out := true;

return out

The following holds:

unger (w,X) if X = w(for X e NUT, w € T*)

The parser (2)

Extension to deal with e-productions and loops:
m Add a list of preceding calls
m pass this list when calling the parser again

m if the new call is already on the list, stop and return false

Initial call: unger(w, S, 0))

The parser (3)

function unger(w,X,L):
out := false;
if (X,w) €L, return out;
else if w=X or (w=¢ and X - €€ P)

then out := true
else for all X— X;...Xy €P:
for all xi,...,xx € T* with w=x...x:
if AY unger(x, X, LU{(X,w)})
then out := true;

return out

The parser (4)

m So far, we have a recognizer, not a parser.

m To turn this into a parser, every call unger(..) must return a
(set of) parse trees.

m This can be obtained from

@ the succssful productions X — X ... Xk, and
@ the parse trees returned by the calls unger (x;, X;).

m Note, however, that there might be a large amount of parse
trees since in each call, there might be more than one success-
ful production.

m We will come back to the compact presentation of several anal-
yses in a parse forest.

An example (1)

m Assume a CFG without e-productions
m Production S — NP VP

m Input sentence w with |w| = 34:

Mr. Sarkozy’s pension reform, which only affects about 500,000 public
sector employees, is the opening salvo in a series of measures aimed
more broadly at rolling back France’s system of labor protections.

(New York Times)

10

21

An example (2)

Partitions according to Unger’s parser:

N
NP %4
1. Mr. Sarkozy’s ... protections
Mr. Sarkozy ’s... protections

3. Mr. Sarkozy’s pension ... protections

33. Mr....labor protections

|w| = 34, consequently we have 33 different partitions.

An example (3)

m Consider the following partition for S — NP VP:

NP Mr. Sarkozy’s pension reform, which ... employees,

S . .
VP is...protections

m For NP — NP S, there are 12 partitions of the NP part
m The partition above is just one partition for one production!

m In the worst case, parsing is exponential in the length n of the
input string!

A note about time complexity

Time complexity

We say that an algorithm is of

m polynomial time complexity if there is a constant ¢ and a k
such that the parsing of a string of length n takes an amount of

time < cnk.

Notation: O(nk)
m exponential time complexity if there is a constant c and a k

such that the parsing of a string of length n takes an amount of
time < ck™.

Notation: O (k")

Optimizations (1)

As an additional filter, we can constrain the set of partitions that we
investigate:

m Check on occurrences of terminals in rhs.

m Check on minimal length of terminal string derived by a non-
terminal.

m Check on obligatory terminals (pre-terminals) in strings de-
rived by non-terminals, e.g., each NP contains an N, each VP
containsa V, ...

m Check on the first terminals derivable from a non-terminal.

Optimizations (2)

Furthermore, we can use tabulation (dynamic programming) in order
to avoid computing several times the same thing:

@ Whenever unger (X, w, L) yieldsaresult res, we store
(X, w, res) in our table of partial parsing results.

@ Ineverycallunger (X, w, L), we first check whether we
have already computed a result (X, w, res) and if so, we stop
immediately and return res.

Optimizations (3)

Results (X, w, res) can be stored in a three-dimensional table (chart)

C:

m Assume k = [N + T| and non-terminals N and terminals T to
have a unique index < k. Furthermore, assume |w| = n with
W = Wy - - - Wy, then you can use a k X n X n table, the chart!

@ Whenever unger (X, w;---w;, L) yields aresult resand m
index of X, then C(m, i, j) = res

@ Inevery callunger (X, w;---w;, L), we first check whether
we have already a value in C(m, i, j) and if so, we stop and
return C(m, i, j)

m Advantage: access of C(m, i,) in constant time.

m Disadvantage: storing the Chart needs more memory.

m Assumption: grammar is e-free — otherwise we need a
k x (n+1) x (n+ 1) chart.

Optimizations (4)

m G=(N,T,P,S),N = {S,B}, T = {a, b, ¢} and productions
S— aSB|c B— bb

m Input word w = achb.
m We assume that, when guessing the span of a rhs element, we
take into account that ...
@ each terminal spans only a corresponding single terminal
@ the span of an S has to start with an aor a c
@ the span of a B has to start with a b
© the span of each X € N U T contains at least one symbol (no
e-productions)

Optimizations (5)

Example continued

Chart obtained for w = acbb

S = achb? — t

j «
4| (s,1) (B,1) | (b,1) @y ar =t
= c{ —
(B.f) e
3 (S,f) <b’ t> C*:> c? =t
2 <S t) B= bb? — t
(c7t> b= b? >t
RRC 4 b= b? >t
i > 3 1 - S ch—f
' BXpsf

(Productions: S — aSB|c¢ B — bb)

18

21

Optimizations (6)

In addition, we can tabulate entire productions with the spans of their
different symbols. This gives us a compact presentation of the parse
forest!

m In every call unger (X, w; - - - wj), we first check whether we
have already a value in C(m, i, j) and if so, we stop and return

C(m,i,j).
m Otherwise, we compute all possible first steps of derivations
X = w: for every production X — X ... X; and all wy, ..., wg

such that the recursive Unger calls yield true, we add (X, w) —
(X1, w1) ... (Xk, wi) with the indices of the spans to the list of
productions.

m If at least one such production has been found, we return
true, otherwise false.

Example on handout.

Conclusion

Unger’s parser is
m a non-directional top-down parser.

m highly non-deterministic because during parsing, the yields of
all non-terminals in righthand sides must be guessed.

m in general of exponential (time) complexity.

m of polynomial time complexity if tabulation is applied.

20/2

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

	Introduction
	The Parser
	An Example
	Optimizations
	Conclusion

