Parsing Unger's Parser

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2016/17

HEINRICH HEINE

Table of contents

- Introduction
- 2 The Parser
- 3 An Example
- 4 Optimizations
- 6 Conclusion

Introduction (1)

Unger's parser (Grune and Jacobs, 2008) is a CFG parser that is

- a top-down parser: we start with S and subsequently replace lefthand sides of productions with righthand sides
- a non-directional parser: the expanding of non-terminals (with appropriate righthand sides) is not ordered; therefore we need to guess the yields of all non-terminals in a right-hand side at once

Introduction (2)

 $G = \langle N, T, P, S \rangle, N = \{S, NP, VP, PP, V, \ldots\}, T = \{Mary, man, telescope, \ldots\}, productions: <math>S \rightarrow NP \ VP, \ VP \rightarrow V \ NP, \ NP \rightarrow Mary, \ldots$

Input: Mary sees the man with the telescope

1.	S	Mary sees the man with the telescope	
2.	NP	Mary	$S \rightarrow NP VP (1.)$
3.	VP	sees the man with the telescope	
4.	NP	Mary sees	$S \rightarrow NP VP (1.)$
5.	VP	the man with the telescope	

:

14.	Mary	Mary	$NP \rightarrow Mary$ (2.)
15.	VP	sees	$VP \rightarrow VP PP (3.)$
16.	PP	the man with the telescope	
17.	VP	sees the	$VP \rightarrow VP PP (3.)$
18.	PP	man with the telescope	

:

Introduction (3)

Parsing strategy:

- The parser takes an $X \in N \cup T$ and a substring w of the input.
- Initially, this is *S* and the entire input.
- If *X* and the remaining substring are equal, we can stop (success for *X* and *w*).
- Otherwise, *X* must be a non-terminal that can be further expanded. We then choose an *X*-production and partition *w* into further substrings that are paired with the righthand side elements of the production.
- The parser continues recursively.

The parser (1)

Assume CFG without ϵ -productions and without loops $A \stackrel{+}{\Rightarrow} A$

```
function unger(w,X):
    out := false;
    if w = X, then out := true
    else for all X \to X_1 \dots X_k:
        for all x_1, \dots, x_k \in T^+ with w = x_1 \dots x_k:
        if \bigwedge_{i=1}^k \operatorname{unger}(x_i, X_i)
        then out := true;
    return out
```

The following holds:

unger
$$(w, X)$$
 iff $X \stackrel{*}{\Rightarrow} w$ (for $X \in N \cup T, w \in T^*$)

The parser (2)

Extension to deal with ϵ -productions and loops:

- Add a list of preceding calls
- pass this list when calling the parser again
- if the new call is already on the list, stop and return false

Initial call: unger(w, S, \emptyset)

The parser (3)

```
function unger(w, X, L):
    out := false;
    if \langle X, w \rangle \in L, return out;
    else if w = X or (w = \epsilon \text{ and } X \to \epsilon \in P)
        then out := true
    else for all X \to X_1 \dots X_k \in P:
        for all x_1, \dots, x_k \in T^* with w = x_1 \dots x_k:
        if \bigwedge_{i=1}^k \text{unger}(x_i, X_i, L \cup \{\langle X, w \rangle\})
        then out := true;
    return out
```

The parser (4)

- So far, we have a recognizer, not a parser.
- To turn this into a parser, every call unger(..) must return a (set of) parse trees.
- This can be obtained from
 - **1** the succssful productions $X \to X_1 \dots X_k$, and
 - ② the parse trees returned by the calls $unger(x_i, X_i)$.
- Note, however, that there might be a large amount of parse trees since in each call, there might be more than one successful production.
- We will come back to the compact presentation of several analyses in a parse forest.

An example (1)

- Assume a CFG without ε -productions
- Production $S \rightarrow NP VP$
- Input sentence w with |w| = 34:

Mr. Sarkozy's pension reform, which only affects about 500,000 public sector employees, is the opening salvo in a series of measures aimed more broadly at rolling back France's system of labor protections.

(New York Times)

An example (2)

Partitions according to Unger's parser:

		S
	NP	VP
1.	Mr.	Sarkozy's protections
2.	Mr. Sarkozy	's protections
3.	Mr. Sarkozy's	pension protections
		:
33.	Mrlabor	protections

|w| = 34, consequently we have 33 different partitions.

An example (3)

■ Consider the following partition for $S \rightarrow NP VP$:

```
S = {NP \over VP} Mr. Sarkozy's pension reform, which ... employees, VP = {\rm is \ ... \ protections}
```

- For $NP \rightarrow NP$ S, there are 12 partitions of the NP part
- The partition above is just one partition for one production!
- In the worst case, parsing is exponential in the length *n* of the input string!

A note about time complexity

Time complexity

We say that an algorithm is of

■ **polynomial time complexity** if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq cn^k$.

Notation: $\mathcal{O}(n^k)$

exponential time complexity if there is a constant c and a k such that the parsing of a string of length n takes an amount of time $\leq ck^n$.

Notation: $\mathcal{O}(k^n)$

Optimizations (1)

As an additional filter, we can constrain the set of partitions that we investigate:

- Check on occurrences of terminals in rhs.
- Check on minimal length of terminal string derived by a nonterminal.
- Check on obligatory terminals (pre-terminals) in strings derived by non-terminals, e.g., each *NP* contains an *N*, each *VP* contains a *V*, ...
- Check on the first terminals derivable from a non-terminal.

Optimizations (2)

Furthermore, we can use tabulation (dynamic programming) in order to avoid computing several times the same thing:

- Whenever unger (X, w, L) yields a result *res*, we store $\langle X, w, res \rangle$ in our table of partial parsing results.
- **②** In every call unger (X, w, L), we first check whether we have already computed a result $\langle X, w, res \rangle$ and if so, we stop immediately and return *res*.

Optimizations (3)

Results $\langle X, w, res \rangle$ can be stored in a three-dimensional table (chart) C:

- Assume k = |N + T| and non-terminals N and terminals T to have a unique index $\leq k$. Furthermore, assume |w| = n with $w = w_1 \cdots w_n$, then you can use a $k \times n \times n$ table, the chart!
 - Whenever unger $(X, w_i \cdots w_j, L)$ yields a result *res* and *m* index of *X*, then C(m, i, j) = res
 - ② In every call unger $(X, w_i \cdots w_j, L)$, we first check whether we have already a value in C(m, i, j) and if so, we stop and return C(m, i, j)
- Advantage: access of C(m, i, j) in constant time.
- Disadvantage: storing the Chart needs more memory.
- Assumption: grammar is ε -free otherwise we need a $k \times (n+1) \times (n+1)$ chart.

Optimizations (4)

Example

- $G = \langle N, T, P, S \rangle$, $N = \{S, B\}$, $T = \{a, b, c\}$ and productions $S \rightarrow aSB \mid c \mid B \rightarrow bb$
- Input word w = acbb.
- We assume that, when guessing the span of a rhs element, we take into account that ...
 - each terminal spans only a corresponding single terminal
 - 2 the span of an *S* has to start with an *a* or a *c*
 - the span of a *B* has to start with a *b*
 - **1** the span of each $X \in N \cup T$ contains at least one symbol (no ε -productions)

Optimizations (5)

Example continued

Chart obtained for w = acbb

j					
4	$\langle S, t \rangle$		$\langle B, t \rangle$	$\langle b,t \rangle$	
				$\langle b, t \rangle$ $\langle B, f \rangle$	
3		$\langle S, f \rangle$	$\langle b, t \rangle$		
2		$\langle S, t \rangle$			
		$\langle c, t \rangle$			
1	$\langle a,t\rangle$				
	1	2	3	4	i

(Productions:
$$S \rightarrow aSB \mid c \mid B \rightarrow bb$$
)

$$S \stackrel{*}{\Rightarrow} acbb? \rightarrow t$$
 $a \stackrel{*}{\Rightarrow} a? \rightarrow t$
 $S \stackrel{*}{\Rightarrow} c? \rightarrow t$
 $c \stackrel{*}{\Rightarrow} c? \rightarrow t$
 $B \stackrel{*}{\Rightarrow} bb? \rightarrow t$
 $b \stackrel{*}{\Rightarrow} b? \rightarrow t$
 $b \stackrel{*}{\Rightarrow} b? \rightarrow t$
 $S \stackrel{*}{\Rightarrow} cb \rightarrow f$
 $B \stackrel{*}{\Rightarrow} b \rightarrow f$

Optimizations (6)

In addition, we can tabulate entire productions with the spans of their different symbols. This gives us a compact presentation of the parse forest!

- In every call unger $(X, w_i \cdots w_j)$, we first check whether we have already a value in C(m, i, j) and if so, we stop and return C(m, i, j).
- Otherwise, we compute all possible first steps of derivations $X \stackrel{*}{\Rightarrow} w$: for every production $X \to X_1 \dots X_k$ and all w_1, \dots, w_k such that the recursive Unger calls yield true, we add $\langle X, w \rangle \to \langle X_1, w_1 \rangle \dots \langle X_k, w_k \rangle$ with the indices of the spans to the list of productions.
- If at least one such production has been found, we return true, otherwise false.

Example on handout.

Conclusion

Unger's parser is

- a non-directional top-down parser.
- highly non-deterministic because during parsing, the yields of all non-terminals in righthand sides must be guessed.
- in general of exponential (time) complexity.
- of polynomial time complexity if tabulation is applied.

Grune, D. and Jacobs, C. (2008). *Parsing Techniques. A Practical Guide.* Monographs in Computer Science. Springer. Second Edition.