
Parsing
Top-Down Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 19

Table of contents

1 Introduction

2 �e recognizer

3 �e parser

4 Control structures

5 Parser generators

6 Conclusion

2 / 19

Introduction

CFG parser that is

a top-down parser: we start with S and subsequently replace
le�hand sides of productions with righthand sides.
a directional parser: the expanding of non-terminals (with ap-
propriate righthand sides) is ordered; we start with the le�most
non-terminal and go through the righthand sides of produc-
tions from le� to right.
In particular: we determine the start position of the span of
the ith symbol in a rhs only a�er having processed the i − 1
preceding symbols.
a LL-parser: we process the input from le� to right while con-
structing a le�most derivation.

First proposed by Sheila Greibach (for CFGs in GNF).
Grune and Jacobs (2008)

3 / 19

�e recognizer (1)

Assume CFG without le� recursion A +⇒ Aα.

Function top-down with arguments

w: remaining input;
α: remaining sentential form (a stack).

top-down(w,α) i� α ∗⇒ w (for α ∈ (N ∪ T)∗,w ∈ T∗)

Initial call:
top-down(w,S)

4 / 19

�e recognizer (2)

Top-down recognizer
def top-down(w,α):

out = false
if w = α = ε:

out = true
elif w = aw′ and α = aα′:

out = top-down(w′,α′) scan
elif α = Xα′ with X ∈ N:

for X → X1 . . .Xk in P:
if top-down(w, X1 . . .Xkα

′): predict
out = true

return out

5 / 19

�e recognizer (3)

�is is exactly what the following PDA-construction for a CFG does:

start with stack Z0 and q0.
δ(q0, ε,Z0) = {〈q1, SZ0〉}
〈q1, α〉 ∈ δ(q1, ε,A) for all A→ α

〈q1, ε〉 ∈ δ(q1, a, a) for all a ∈ T .
δ(q1, ε,Z0) = {〈qf , ε〉}

(LL-PDA construction in JFLAP)

6 / 19

�e recognizer (4)

Example: Top-down recognizer
G = 〈N , T , P, S〉, N = {A,B}, T = {a, b, c}

P = {S → ASB |AASB | c,A→ a,B→ b}
Input w = aacb. Calls of top-down (order is depth-�rst)

stack α w
1. S aacb
2. ASB aacb pred(1)
3. aSB aacb pred(2)
4. SB acb scan(3)
5. ASBB acb pred(4)
6. aSBB acb pred(5)
7. SBB cb scan(6)
4 unseccessful predicts
8. cBB cb pred(7)
scan – predict – scan

stack α w
9. b – pred
10. AASB aacb pred(1)
11. aASB aacb pred(10)
scan – predict
12. SB cb scan
4 unseccessful predicts
13. cB cb pred(12)
14. B b scan(13)
15. b b pred(14)
16. – – scan(15)

7 / 19

�e parser (1)

How to turn the recognizer into a parser:
Add an analysis stack to the parser that allows you to construct the
parse tree.
Assume that for each A ∈ N , the righthand sides of A-productions are
numbered (have indices).
Whenever

a production is applied (prediction step), the le�hand side is
pushed on the analysis stack together with the index of the
righthand side;
a terminal a is scanned, a is pushed on the analysis stack.
(�is is needed for backtracking in a depth-�rst strategy.)

8 / 19

�e parser (2)

Top-down parser
def top-down(w,α,Γ):

out = false
if w = α = ε:

output Γ
out = true

elif w = aw′ and α = aα′:
out = top-down(w′,α′, aΓ)

elif α = Xα′ with X ∈ N:
for X → X1 . . .Xk in P with rhs-index i:

if top-down(w, X1 . . .Xkα
′, 〈X , i〉Γ):

out = true
return out

9 / 19

�e recognizer (3)

Example: Top-down parser
G = 〈N , T , P, S〉, N = {A,B}, T = {a, b, c}

P = {S → ASB |AASB | c,A→ a,B→ b}
Input w = aacb. Consider only the successful predicts and scans (Xi is a
notation for 〈X,i〉):
stack α w analysis stack
S aacb
AASB aacb S2
aASB aacb A1S2
ASB acb aA1S2
aSB acb A1aA1S2
SB cb aA1aA1S2
cB cb S3aA1aA1S2
B b cS3aA1aA1S2
b b B1cS3aA1aA1S2
– – bB1cS3aA1aA1S2

the analysis stack
gives a le�most
derivation in
reverse order.

Le�most derivation:
S2A1A1S3B1

10 / 19

�e parser (4)

Problematic grammars for this parser: CFGs that allow for
le�-recursions. Solutions:

Eliminate the le�-recursion.
Drawback: derivation trees change considerably.
Make sure, grammar does not contain ε-productions or loops.
�en do an additional check (when predicting):

. . .
then for all X → X1 . . .Xk:

if |w| ≥ |X1 . . .Xkα
′|

and top-down(w, X1 . . .Xkα
′)

then out := true;

�is check is useful even for grammars that are not le�-recursive.

11 / 19

An example (1)

Grammar
S → AB
A→ aAB | a
B→ b

S ∗⇒ aabb ?

AB ∗⇒ aabb ?

aB ∗⇒ aabb ?

B ∗⇒ abb ?

b ∗⇒ abb ?

aABB ∗⇒ aabb ?

ABB ∗⇒ abb ?

aBB ∗⇒ abb ?

BB ∗⇒ bb ?

bB ∗⇒ bb ?

B ∗⇒ b ?

b ∗⇒ b ?

ε
∗⇒ ε ?

aABBB ∗⇒ abb ?

ABBB ∗⇒ bb ?

aBBB ∗⇒ bb ?aABBBB ∗⇒ bb ?

(basic algorithm)

12 / 19

An example (2)

(check that
word length ≥
length of
sentential form)

S ∗⇒ aabb ?

AB ∗⇒ aabb ?

aB ∗⇒ aabb ?

B ∗⇒ abb ?

b ∗⇒ abb ?

aABB ∗⇒ aabb ?

ABB ∗⇒ abb ?

aBB ∗⇒ abb ?

BB ∗⇒ bb ?

bB ∗⇒ bb ?

B ∗⇒ b ?

b ∗⇒ b ?

ε
∗⇒ ε ?

13 / 19

Control structures (1)

In general, directional top-down parsing is non-deterministic because
of multiple righthand sides for single non-terminals.
Two di�erent control strategies: You can

either proceed depth-�rst (proceed the righthand sides one
a�er the other, each time pursuing the possible derivation tree
up to the moment where we either �nd a parse tree or fail)
If we fail, we have to go back and try the next possibility (back-
tracking). For this, we have to reverse the operations made on
the stacks.
or proceed breadth-�rst (try all righthand sides in parallel)
Usually, all possible predicts are done before scanning the next
input symbol.

�ese are di�erent control structures, they are not part of the general
top-down parsing algorithm.

14 / 19

Control structures (2)

Advantages and disadvantages:
Breadth-�rst:

Needs a lot of memory.

Depth-�rst (backtracking):

Does not need much memory.
If all parse trees are searched for and the grammar is known to
be ambiguous, more time-consuming than breadth-�rst.

⇒ No perfect solution. �e best option depends on the grammar, the
input, the task (exhaustive parsing or not), the programming language
used. . .

15 / 19

Parser generators (1)

In general, we can

either implement a general CFG parser (perhaps for a restricted
type of CFG) that takes G and w as input

w,G Parser parse trees/no

or generate a speci�c parser for a given grammar. �e new
parser receives only w as input.

G

w

Parser generator Parser parse trees/no

16 / 19

Parser generators (2)

Parser generators for top-down (LL) parsers o�en use a technique
called recursive descent:

for each non-terminal X , a procedure is generated that tries all
rhs of X -productions with calls for all non-terminals it encoun-
ters (one procedure ' one production)
procedures can call each other, in particular, they can call (di-
rectly or via other intermediate calls) itself again (recursive)

Some recursive descent parser generators:

JavaCC, Java Compiler Compiler:
https://javacc.dev.java.net/
ANTLR, ANother Tool for Language Recognition (generates
C++, Java, Python, C#):
http://www.antlr.org/

17 / 19

Conclusion

Important features of directional top-down parsing:

LL-parsing: input processed from le� to right, constructs a
le�most derivation;
parsing steps prediction and scan;
non-deterministic in general;
di�erent control structures (breadth-�rst, depth-�rst);
does not work for le�-recursive CFGs;
parser generation with recursive descent.

18 / 19

Grune, D. and Jacobs, C. (2008). Parsing Techniques. A Practical Guide.
Monographs in Computer Science. Springer. Second Edition.

19 / 19

	Introduction
	The recognizer
	The parser
	Control structures
	Parser generators
	Conclusion

