Parsing

Tomita’s Parser: Generalized LR Parsing

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2017/18

A=
HEINRICH HEINE

UNIVERSITAT DUSSELDORF

1/16

Table of contents

@ Motivation

© Graph-structured stack

© The parse forest

@ Conclusion

2/16

Motivation

m LR-parsing with one lookahead is deterministic for LR(1) gram-
mars. But there are CFLs that cannot be generated by LR(1)-
grammars.

m If a grammar is not LR(1), we can construct a LR(1) parse table
with more than one entry in some of the fields. This can be
used for non-deterministic parsing.

m However, since we don’t have tabulation, partial results get
computed several times and the complexity is exponential.

m Tomita’s idea: Use a graph-structured stack to avoid computing
partial results more than once.

Tomita’s parser is an LR parser with tabulation

3/16

Graph-structured stack (1)

The stack is a directed acyclic graph (DAG) with the leaves being the
topmost elements.

A directed acyclic graph consists of

m A set of nodes (or vertices) V (here finite), and

m aset of edges E C V x V, such that
a)forallve V: (v,v) ¢ E, and
b) for every sequence vy, ..., vx € V with (v, va), ..., (vk_1, %) €
Vv # .

In our case, the vertices of the DAG are labelled with states,
non-terminals or terminals.

Graph-structured stack (2)

Our parsing is incremental, i.e., processes the input one by one from
left to right.

For every word in the input, before processing that word, we have k
possible states.

m We first do the possible reductions for each of the states while
leaving the original stack if there is a shift possible. In case of
a reduce/reduce or shift/reduce conflict, we branch. If several
branches lead to the same states, we identify these.
We repeat this until no more reductions are possible.

m We then do the possible shifts. Again, if several lead to the
same states, we identify these.

Graph-structured stack (3)

Example: 1. S — AB, 2. S — SC, 3. B— BC,
4.A—a,5B—b6.C—c

Parse
table:

a b ¢ $ A B C S
0| s4 1 2
1 s5 3
2 S6 acc 7
3 rl,s6 rl 8
4 r4
5 r5 15
6 16 16
7 r2 r2
8 r3 r3

Graph-structured stack (4)

For input w = abcc, at some point (after shifting the first c) the stack
is the following:

/S<—2\

N
A—1—B<«<3

0 C«— 6

Graph-structured stack (5)

Problems (infinite loops) in generalized LR parsing can arise from

m Loops: Productions A — B, B — A would lead to an infinite
reduce-loop.

m Hidden left-recursion: A — «aAfB with a = € would lead
to an infinite loop of reducing € to a since A — « e Af and
A — e Aff would be in the same state.

The parse forest (1)

m The dag-structure avoids an explosion in the number of stacks.

m However, we can still have exponentially many parse trees for
a given input.

m Therefore, a compact representation of parse forests is needed.

m Tomita uses two techniques: sub-tree sharing and local ambigu-
ity packing.

9/16

The parse forest (2)

Example: Take the preceding grammar, w = abcc

Three parse trees:

N AN
LA A A
AT A
b S

B
b
Sub-tree sharing: Common sub-trees are represented only once.

10/16

The parse forest (3)

Result of sub-tree sharing:

S S><S
LA
LK

| N\

A B C C
O

Local ambiguity packing: whenever the same category spans the

same input (possibly with different analyses), the corrponding nodes
are put into one packed node.

11/16

The parse forest (4)

Result of local ambiguity packing:

The parse forest (5)

Packed parse forests are easy to construct within an LR-parser with
graph-structured stack: Whenever a subtree is shared or different
subtrees ar packed into one node, there will be a corresponding
shared node in the stack graph. More precisely,

m Whenever a node is shared, we create a shared sub-tree, and
m whenever two or more branches get identified into a single new

branch, we create a packed node.

Instead of non-terminals or termnals we use pointers to/identifiers of
parse trees as stack vertex labels. This way, in different places we can
have pointers to the same parse tree.

13/16

The parse forest (6)

Example: w = abc.

Stack analysis
0 s4

0—AOl—4 r4 [l a
0—@—1 5 2: A(T)
0—[R—1—[B—5 15 BL:Db
0—@—1—@—31l6 [B@E)

0—[—1—[4—3 s6

T~

2 s6

[5: S(21[4)

The parse forest (7)

0—[R—1—M—3—[—6 16

T~

0—[k—1—[4—3—[1—8 13

T~

f—7 12
01——3 rl

[
0—[11]—2 acc

2

2

2 acc

(6] ¢

71 C((&)

(8]: B([@,7)), & S(El,
[10l: S(218]), [l [[i0], (2]

Conclusion

Tomita’s algorithm

m is a general LR(1) parser that works for every CFG;

m uses a graph-structured stack to avoid the explosion otherwise
linked to non-determinism;

m uses a compact parse forest representation to avoid the explo-
sion arising from ambiguous grammars.

Reference:
Masaru Tomita (1987) An Efficient Augmented-Context-Free Parsing
Algorithm Computational Linguistics 13(1-2), 1987.

16/16

	Motivation
	Graph-structured stack
	The parse forest
	Conclusion

