
Parsing
Tomita’s Parser: Generalized LR Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 16

Table of contents

1 Motivation

2 Graph-structured stack

3 �e parse forest

4 Conclusion

2 / 16

Motivation

LR-parsing with one lookahead is deterministic for LR(1) gram-
mars. But there are CFLs that cannot be generated by LR(1)-
grammars.
If a grammar is not LR(1), we can construct a LR(1) parse table
with more than one entry in some of the �elds. �is can be
used for non-deterministic parsing.
However, since we don’t have tabulation, partial results get
computed several times and the complexity is exponential.
Tomita’s idea: Use a graph-structured stack to avoid computing
partial results more than once.

Tomita’s parser is an LR parser with tabulation

3 / 16

Graph-structured stack (1)

�e stack is a directed acyclic graph (DAG) with the leaves being the
topmost elements.

A directed acyclic graph consists of

A set of nodes (or vertices) V (here �nite), and

a set of edges E ⊂ V × V , such that
a) for all v ∈ V : 〈v, v〉 /∈ E, and
b) for every sequence v1, . . . , vk ∈ V with 〈v1, v2〉, . . . , 〈vk−1, vk〉 ∈
V : v1 6= vk .

In our case, the vertices of the DAG are labelled with states,
non-terminals or terminals.

4 / 16

Graph-structured stack (2)

Our parsing is incremental, i.e., processes the input one by one from
le� to right.

For every word in the input, before processing that word, we have k
possible states.

We �rst do the possible reductions for each of the states while
leaving the original stack if there is a shi� possible. In case of
a reduce/reduce or shi�/reduce con�ict, we branch. If several
branches lead to the same states, we identify these.
We repeat this until no more reductions are possible.

We then do the possible shi�s. Again, if several lead to the
same states, we identify these.

5 / 16

Graph-structured stack (3)

Example: 1. S → AB, 2. S → SC, 3. B→ BC,
4. A→ a, 5. B→ b, 6. C → c

Parse
table:

a b c $ A B C S
0 s4 1 2
1 s5 3
2 s6 acc 7
3 r1, s6 r1 8
4 r4
5 r5 r5
6 r6 r6
7 r2 r2
8 r3 r3

6 / 16

Graph-structured stack (4)

For input w = abcc, at some point (a�er shi�ing the �rst c) the stack
is the following:

S 2
0

A 1 B 3
c 6

7 / 16

Graph-structured stack (5)

Problems (in�nite loops) in generalized LR parsing can arise from

Loops: Productions A → B,B → A would lead to an in�nite
reduce-loop.

Hidden le�-recursion: A → αAβ with α ∗⇒ ε would lead
to an in�nite loop of reducing ε to α since A → α • Aβ and
A→ •αAβ would be in the same state.

8 / 16

�e parse forest (1)

�e dag-structure avoids an explosion in the number of stacks.

However, we can still have exponentially many parse trees for
a given input.

�erefore, a compact representation of parse forests is needed.

Tomita uses two techniques: sub-tree sharing and local ambigu-
ity packing.

9 / 16

�e parse forest (2)

Example: Take the preceding grammar, w = abcc

�ree parse trees:

S

B

C

c

B

C

c

B

b

A

a

S

C

c

S

B

B

C

c

B

b

A

a

S

C

c

S

C

c

S

B

b

A

a

Sub-tree sharing: Common sub-trees are represented only once.

10 / 16

�e parse forest (3)

Result of sub-tree sharing:
S S S

S S

S

A

a

B

B

B C

c

C

cb

Local ambiguity packing: whenever the same category spans the
same input (possibly with di�erent analyses), the corrponding nodes
are put into one packed node.

11 / 16

�e parse forest (4)

Result of local ambiguity packing:
S S

S S

S

A

a

B

B

B C

c

C

cb

12 / 16

�e parse forest (5)

Packed parse forests are easy to construct within an LR-parser with
graph-structured stack: Whenever a subtree is shared or di�erent
subtrees ar packed into one node, there will be a corresponding
shared node in the stack graph. More precisely,

Whenever a node is shared, we create a shared sub-tree, and

whenever two or more branches get identi�ed into a single new
branch, we create a packed node.

Instead of non-terminals or termnals we use pointers to/identi�ers of
parse trees as stack vertex labels. �is way, in di�erent places we can
have pointers to the same parse tree.

13 / 16

�e parse forest (6)

Example: w = abc.

Stack analysis
0 s4

0 1 4 r4 1 : a
0 2 1 s5 2 : A(1)
0 2 1 3 5 r5 3 : b
0 2 1 4 3 r1, s6 4 : B(3)
0 2 1

5

4 3

2

s6

s6 5 : S(2 , 4)

14 / 16

�e parse forest (7)

0 2 1

5

4 3 6 6

2

r6

6 : c
0 2 1

5

4 3 7

7

8

72

r3

r2 7 : C(6)
0 2 1

9

8 3

2

r1

acc 8 : B(4 , 7), 9 : S(5 , 7)
0 11 2 acc 10 : S(2 , 8), 11 : [10 , 9]

15 / 16

Conclusion

Tomita’s algorithm

is a general LR(1) parser that works for every CFG;

uses a graph-structured stack to avoid the explosion otherwise
linked to non-determinism;

uses a compact parse forest representation to avoid the explo-
sion arising from ambiguous grammars.

Reference:
Masaru Tomita (1987) An E�cient Augmented-Context-Free Parsing
Algorithm Computational Linguistics 13(1–2), 1987.

16 / 16

	Motivation
	Graph-structured stack
	The parse forest
	Conclusion

