Parsing
Shift Reduce Parsing

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2016/17

A=
HEINRICH HEINE

UNIVERSITAT DUSSELDORF

18

Table of contents

@ Introduction

© Shift and reduce

© The algorithm

@ Soundness and completeness

© Control structures

2/18

Introduction (1)

CFG parser that is

a bottom-up parser: we start with the terminals and subse-
quently replace righthand sides of productions with lefthand
sides.

a directional parser: the replacing of righthand sides with left-
hand sides is ordered corresponding to a rightmost derivation.

a LR-parser: we process the input from left to right while con-
structing a rightmost derivation.

a Shift-reduce-parser: the two operations of the parser are shift
and reduce.

3/18

Introduction (2)

This parser corresponds to the CYK with dotted productions and with
more or less an on-line order for filling the chart:

m read input from left to right,

m at every input position i, complete as much as possible

But: instead of a chart, we use a stack that contains the sentential
form that we have already found.

Shift and reduce (1)

The parser consists of
m a stack (initially empty) I" € (N U T)*
m the remaining input (initially w).
Idea:

m w is shifted on the stack while, whenever the top of the stack
is the rhs of a production in reverse order, this is replaced with
the lhs.

m Success if I' = S and remaining input e.

Shift and reduce (2)

For convenience we write the stack with its top on the right.

Example

S — ABC,A — a|Aa,B— b|Bb,C — ¢
w = aabbbc.
(only successful moves of the parser are listed)

aabbbc
a abbbc shift
A abbbc reduce, A — a
Aa bbbc shift
A bbbc reduce, A — Aa
Ab bbc shift
AB bbc reduce, B— b
ABb bc shift

Shift and reduce (3)

Example continued

S — ABC,A — a|Aa,B— b|Bb,C — ¢

ABb bc
AB bc reduce, B— Bb
ABb ¢ shift
AB ¢ reduce, B— Bb
ABc shift
ABC reduce, C — ¢
S reduce, S — ABC

If we apply the productions in reverse order we obtain a rightmost
derivation:

S = ABC = ABc = ABbc = ABbbc = Abbbc = Aabbbc =
aabbbc

Shift and reduce (4)

In general, this parsing strategy is non-deterministic.
Non-determinism can arise if there are two productions such that the
rhs of one of them is a prefix of the rhs of the other, i.e., if there are
different productions A — «, B— a3 with« € (N U T)" and

B e(NUT)*

To see this assume that we have such productions. In a situation

I' = ... o we might have the possibility to either reducetoI' = ... A
or continue with a sequence of shift and reduce steps leading to
I'=...af and then reducing to ' = .. . B.

If parsing is deterministic, we always try reduce first. Only if it is not
possible, we perform a shift.

Shift and reduce (5)

In the non-deterministic case, problems can be caused by
m e-productions and
m loops A = A

Both can lead to infinite loops of the parser.

The algorithm (1)

Assume a grammar without e-productions and without loops.

function bottom-up(w,I):
if w=¢e¢ and I'=S then true
else reduce(w,I') or shift(w,I')

function shift(w,I'):
if w=e¢e¢ then false
else if w=aw', ac T
then bottom-up(w',Ta)

10/18

The algorithm (2)

function reduce(w,I"):
out := false;
for every A—- a€P:
if '=T"a and bottom-up(w,I’'A)
then out := true;
return out

Initial call: bottom-up(w, ¢€)

11/18

The algorithm (3)

Shift reduce parsing schema

Parsing schema for shift-reduce parsing:
Item form [I', i] (w has been shifted up to position i).

Axiom:

[€, 0]
. Lo,
Reduce: T4, 1 A—a€eP
Lo (0 o
Shift: Ta, i+ 1] Wit1 = a

Goal item [S, n].

12/18

The algorithm (4)

Shift-reduce parsing is exactly what is done by the following PDA
constructed from a CFG:

m start with stack Z; and qy;
m (qo,aZ) € (qo,a,Z) forallae T,Z € NU T U {Z} (shift);
m (qo, A) € 6(qo, €, aF) forall A — « (reduce);
{q1,€) € 0(qo, €, 5);

(ar,€) € 0(qu, €,).

(LR PDA construction in JFLAP for a given CFG)

13/18

The algorithm (5)

In the non-deterministic case, the number of items can be quite large.
Example: S — aB|bA, A — a|aS|bAA,B — b| bS| aBB

w = ab yields 8 items:

€,0] axiom

a, 1] shift

A,;1] reduce from 2.

ab,2] shift from 2.

Ab,2] shift from 3.

aB,2] reduce from 4.

AB, 2] reduce from 5.

S, 2] reduce from 6.

w = abba yields 49 items! (At some point, 11 possibilities are pursued
in parallel.)

P NN kBN

Soundness and completeness

To prove that our algorithm is correct (sound and complete), we have
to show that [T, i if T = wy ... w;.
We split this into two parts:
© Soundness:
If [[', i] then T = wy ... w,
(Can be shown with an induction over the deduction rules.)
@ Completeness:
IfT = wi ... w then [T, 1.
(Can be shown with an induction over [assuming a rightmost
derivation.)

15/18

Control structures (1)

As in the LL-parsing (top-down) case, there are two possibilities:
m either proceed depth-first (try one reduce, pursue as far as
possible, backtrack if parsing not successful),

m or proceed breadth-first (try all possible reduce and shift opera-
tions in parallel).

Control structures (2)

Advantages and disadvantages are similar as in the top-down case.
Breadth-first:
m Needs a lot of memory.
m Better for on-line parsing. (At every moment, all analyses for
the input that has been seen so far have been computed.)

Depth-first (backtracking):

m Does not need much memory.

m Preferable in a probabilistic setting when we search only for
the best solution.

Conclusion

Important features of directional bottom-up parsing:

m LR-parsing: input processed from left to right, constructs a
rightmost derivation;

parsing steps shift and reduce;
® non-deterministic in general;
m different control structures (breadth-first, depth-first);

m does not work for grammars with loops or e-productions;

no chart parser.

18/18

	Introduction
	Shift and reduce
	The algorithm
	Soundness and completeness
	Control structures

