
Parsing
Shi� Reduce Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2016/17

1 / 18

Table of contents

1 Introduction

2 Shi� and reduce

3 �e algorithm

4 Soundness and completeness

5 Control structures

2 / 18

Introduction (1)

CFG parser that is

a bo�om-up parser: we start with the terminals and subse-
quently replace righthand sides of productions with le�hand
sides.
a directional parser: the replacing of righthand sides with le�-
hand sides is ordered corresponding to a rightmost derivation.
a LR-parser: we process the input from le� to right while con-
structing a rightmost derivation.
a Shi�-reduce-parser: the two operations of the parser are shi�
and reduce.

3 / 18

Introduction (2)

�is parser corresponds to the CYK with do�ed productions and with
more or less an on-line order for �lling the chart:

read input from le� to right,
at every input position i, complete as much as possible

But: instead of a chart, we use a stack that contains the sentential
form that we have already found.

4 / 18

Shi� and reduce (1)

�e parser consists of

a stack (initially empty) Γ ∈ (N ∪ T)∗

the remaining input (initially w).

Idea:

w is shi�ed on the stack while, whenever the top of the stack
is the rhs of a production in reverse order, this is replaced with
the lhs.
Success if Γ = S and remaining input ε.

5 / 18

Shi� and reduce (2)

For convenience we write the stack with its top on the right.

Example
S → ABC,A → a |Aa,B → b |Bb,C → c
w = aabbbc.
(only successful moves of the parser are listed)

aabbbc
a abbbc shi�
A abbbc reduce, A → a
Aa bbbc shi�
A bbbc reduce, A → Aa
Ab bbc shi�
AB bbc reduce, B → b
ABb bc shi�

6 / 18

Shi� and reduce (3)

Example continued
S → ABC,A → a |Aa,B → b |Bb,C → c
ABb bc
AB bc reduce, B → Bb
ABb c shi�
AB c reduce, B → Bb
ABc shi�
ABC reduce, C → c

S reduce, S → ABC

If we apply the productions in reverse order we obtain a rightmost
derivation:
S ⇒ ABC ⇒ ABc ⇒ ABbc ⇒ ABbbc ⇒ Abbbc ⇒ Aabbbc ⇒
aabbbc

7 / 18

Shi� and reduce (4)

In general, this parsing strategy is non-deterministic.
Non-determinism can arise if there are two productions such that the
rhs of one of them is a pre�x of the rhs of the other, i.e., if there are
di�erent productions A → α, B → αβ with α ∈ (N ∪ T)+ and
β ∈ (N ∪ T)∗.

To see this assume that we have such productions. In a situation
Γ = . . . α we might have the possibility to either reduce to Γ = . . .A
or continue with a sequence of shi� and reduce steps leading to
Γ = . . . αβ and then reducing to Γ = . . .B.

If parsing is deterministic, we always try reduce �rst. Only if it is not
possible, we perform a shi�.

8 / 18

Shi� and reduce (5)

In the non-deterministic case, problems can be caused by

ε-productions and

loops A +⇒ A.

Both can lead to in�nite loops of the parser.

9 / 18

�e algorithm (1)

Assume a grammar without ε-productions and without loops.

function bottom-up(w,Γ):
if w = ε and Γ = S then true
else reduce(w,Γ) or shift(w,Γ)

function shift(w,Γ):
if w = ε then false
else if w = aw′, a ∈ T

then bottom-up(w′,Γa)

10 / 18

�e algorithm (2)

function reduce(w,Γ):
out := false;
for every A → α ∈ P:

if Γ = Γ′α and bottom-up(w,Γ′A)
then out := true;

return out

Initial call: bottom-up(w, ε)

11 / 18

�e algorithm (3)

Shi� reduce parsing schema
Parsing schema for shi�-reduce parsing:
Item form [Γ, i] (w has been shi�ed up to position i).

Axiom:
[ε, 0]

Reduce: [Γα, i]
[ΓA, i]

A → α ∈ P

Shi�: [Γ, i]
[Γa, i + 1] wi+1 = a

Goal item [S, n].

12 / 18

�e algorithm (4)

Shi�-reduce parsing is exactly what is done by the following PDA
constructed from a CFG:

start with stack Z0 and q0;
〈q0, aZ〉 ∈ δ(q0, a,Z) for all a ∈ T ,Z ∈ N ∪ T ∪ {Z0} (shi�);
〈q0,A〉 ∈ δ(q0, ε, αR) for all A → α (reduce);
〈q1, ε〉 ∈ δ(q0, ε, S);
〈qf , ε〉 ∈ δ(q1, ε,Z0).

(LR PDA construction in JFLAP for a given CFG)

13 / 18

�e algorithm (5)

In the non-deterministic case, the number of items can be quite large.
Example: S → aB | bA,A → a | aS | bAA,B → b | bS | aBB
w = ab yields 8 items:
1. [ε, 0] axiom
2. [a, 1] shi�
3. [A, 1] reduce from 2.
4. [ab, 2] shi� from 2.
5. [Ab, 2] shi� from 3.
6. [aB, 2] reduce from 4.
7. [AB, 2] reduce from 5.
8. [S, 2] reduce from 6.

w = abba yields 49 items! (At some point, 11 possibilities are pursued
in parallel.)

14 / 18

Soundness and completeness

To prove that our algorithm is correct (sound and complete), we have
to show that [Γ, i] i� Γ

∗⇒ w1 . . .wi.
We split this into two parts:

1 Soundness:
If [Γ, i] then Γ

∗⇒ w1 . . .wi.
(Can be shown with an induction over the deduction rules.)

2 Completeness:
If Γ

l⇒ w1 . . .wi then [Γ, i].
(Can be shown with an induction over l assuming a rightmost
derivation.)

15 / 18

Control structures (1)

As in the LL-parsing (top-down) case, there are two possibilities:

either proceed depth-�rst (try one reduce, pursue as far as
possible, backtrack if parsing not successful),
or proceed breadth-�rst (try all possible reduce and shi� opera-
tions in parallel).

16 / 18

Control structures (2)

Advantages and disadvantages are similar as in the top-down case.
Breadth-�rst:

Needs a lot of memory.
Be�er for on-line parsing. (At every moment, all analyses for
the input that has been seen so far have been computed.)

Depth-�rst (backtracking):

Does not need much memory.
Preferable in a probabilistic se�ing when we search only for
the best solution.

17 / 18

Conclusion

Important features of directional bo�om-up parsing:

LR-parsing: input processed from le� to right, constructs a
rightmost derivation;
parsing steps shi� and reduce;
non-deterministic in general;
di�erent control structures (breadth-�rst, depth-�rst);
does not work for grammars with loops or ε-productions;
no chart parser.

18 / 18

	Introduction
	Shift and reduce
	The algorithm
	Soundness and completeness
	Control structures

