
Parsing
Push-Down-Automata (PDA)

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 15

Table of contents

1 Intuition

2 De�nition

3 PDA and CFG

2 / 15

PDA: Intuition (1)

A push-down automaton (Hopcro� and Ullman, 1979, 1994) is a FSA
with an additional stack.
�e moves of the automaton depend on

the current state
the next input symbol
the topmost stack symbol

Each move consists of

changing state
popping the topmost symbol from the stack
pushing a new sequence of symbols on the stack

3 / 15

PDA: Intuition (2)

Example
Automaton that

starts with q0 and stack #

in q0: pushes A on the stack for an input symbol a
in q0: pushes B on the stack for an input symbol b
in q0: leaves stack unchanged and switches to q1 for an input
symbol c
in q1: pops an A from the stack for input symbol a
in q1: pops a B from the stack for input symbol b
in q1: moves to qF if the top of the stack is #

accepts all words that allow to end up in qF

Which (string) language does this automaton accept?

4 / 15

PDA: Intuition (3)

In general, PDAs are non-deterministic, since a given state, input
symbol and topmost stack symbol can allow for more than one move.

In contrast to FSA, the deterministic version of the automaton is not
equivalent to the non-deterministic one: �ere are languages that are
accepted by a non-deterministic PDA but not by any deterministic
PDA.

CFLs are the languages accepted by (non-deterministic) PDAs.

5 / 15

PDA: De�nition (1)

Push-down automaton
A push-down automaton (PDA) M is a tuple 〈Q,Σ,Γ, δ, q0,Z0, F〉:

Q is a �nite set of states
Σ is a �nite set, the input alphabet
Γ is a �nite set, the stack alphabet
q0 ∈ Q is the initial state
Z0 ∈ Γ is the initial stack symbol
F ⊆ Q is the set of �nal states
δ : Q × (Σ ∪ {ε})× Γ→ P�n(Q × Γ∗) is the transition function
(P�n(X) is the set of �nite subsets of X)

Equivalently, one can even de�ne δ as
δ : Q × (Σ ∪ {ε})× Γ∗ → P�n(Q × Γ∗).

6 / 15

PDA: De�nition (3)

An instantaneous description of a PDA is a triple (q,w, γ):

q ∈ Q is the current state of the automaton
w ∈ Σ∗ is the remaining part of the input string
γ ∈ Γ∗ is the current stack

For all q, q′ ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, α, β, γ ∈ Γ∗:

(q, aw, γα) ` (q′,w, βα) i� 〈q′, β〉 ∈ δ(q, a, γ)

`∗ is the re�exive transitive closure of `

7 / 15

PDA: De�nition (4)

�ere are two alternatives for the de�nition of the language accepted
by a PDA M = 〈Q,Σ,Γ, δ, q0,Z0, F〉:

Language of an PDA
�e language accepted by M with a �nal state is

L(M) := {w | (q0,w,Z0) `∗ (qf , ε, γ) for a qf ∈ F and a γ ∈ Γ∗}

�e language accepted by M with an empty stack is

N (M) := {w | (q0,w,Z0) `∗ (q, ε, ε) for a q ∈ Q}

�e two modes of acceptance are equivalent, i.e., for each language L
there is a PDA M1 with L = L(M1) i� there is a PDA M2 with
L = N (M2).

8 / 15

PDA: De�nition (5)

Example

PDA M1 for L(M1) = {wcwR |w ∈ {a, b}∗}

M1 = 〈Q,Σ,Γ, δ, q0,#, F〉
Q = {q0, q1, q2}
Σ = {a, b, c}
Γ = {#,A,B}
F = {q2}.
Transitions:

δ(q0, a, ε) = {〈q0,A〉} δ(q0, b, ε) = {〈q0,B〉}
δ(q0, c, ε) = {〈q1, ε〉} δ(q1, a,A) = {〈q1, ε〉}
δ(q1, b,B) = {〈q1, ε〉} δ(q1, ε,#) = {〈q2,#〉}

9 / 15

PDA: De�nition (6)

Example

PDA M2 for N (M2) = {wcwR |w ∈ {a, b}∗}
M2 = 〈Q,Σ,Γ, δ, q0,#, F〉
Q = {q0, q1}
Σ = {a, b, c}
Γ = {#,A,B}
F = ∅.
Transitions:

δ(q0, a, ε) = {〈q0,A〉} δ(q0, b, ε) = {〈q0,B〉}
δ(q0, c, ε) = {〈q1, ε〉} δ(q1, a,A) = {〈q1, ε〉}
δ(q1, b,B) = {〈q1, ε〉} δ(q1, ε,#) = {〈q1, ε〉}

10 / 15

PDA: De�nition (7)

Deterministic PDA
A PDA M = 〈Q,Σ,Γ, δ, q0,Z0, F〉 is a deterministic PDA (DPDA)
i�

for all q ∈ Q,Z ∈ Γ, a ∈ Σ ∪ {ε}: |δ(q, a,Z)| ≤ 1
and

for all q ∈ Q, Z ∈ Γ: if δ(q, ε,Z) 6= ∅, then δ(q, a,Z) = ∅ for all
a ∈ Σ

Examples for DPDA: M1 and M2 from the previous slides.

�e class of languages accepted by DPDAs is smaller than the class
accepted by (non-deterministic) PDAs.

Example of a language that requires a non-determinstic PDA:

{wwR |w ∈ {a, b}∗}

11 / 15

PDA and CFG (1)

For each CFL L, there is a PDA M with L = N (M):

Assume that ε /∈ L

L = L(G) for a CFG G = 〈N , T , P, S〉 in GNF
M = 〈{q}, T ,N , δ, q, S, ∅〉 with 〈q, γ〉 ∈ δ(q, a,A) i� A→ aγ ∈
P

�e automaton simulates le�most derivations in G

12 / 15

PDA and CFG (2)

Two other possibilities to construct a PDA for a CFG 〈N , T , P, S〉:
1 Top-down, LL

(no le�-recursion allowed in CFG)
start with stack # and q0
δ(q0, ε,#) = {〈q1, S#〉}
〈q1, α〉 ∈ δ(q1, ε,A) ∀A→ α ∈ P
〈q1, ε〉 ∈ δ(q1, a, a) ∀a ∈ T
δ(q1, ε,#) = {〈qF , ε〉}

Creates a le�most derivation
2 Bo�om-up, LR

(no loops A +⇒ A allowed in CFG)
start with stack # and q0
〈q0, aZ〉 ∈ δ(q0, a,Z) ∀a ∈ T , Z ∈ N ∪ T ∪ {#}
〈q0,A〉 ∈ δ(q0, ε, αR) ∀A→ α ∈ P
(αR denotes RHS of production A → α in reverse order)

〈q1, ε〉 ∈ δ(q0, ε, S)
〈qF , ε〉 ∈ δ(q1, ε,#)

Creates a rightmost derivation (in reverse order)
13 / 15

PDA and CFG (3)

For each PDA M with L = N (M): L is a context-free language.

Construction of equivalent CFG for given PDA
M = 〈Q,Σ,Γ, δ, q0,Z0, F〉:

Terminals: Σ

Nonterminals: S and all [q1,Z , q2] with q1, q2 ∈ Q, Z ∈ Γ

Start symbol: S
Productions:

S → [q0,Z0, q] for every q ∈ Q and
[q,A, qm+1] → a[q1,B1, q2][q2,B2, q3] . . . [qm,Bm, qm+1] for
q, q1, . . . , qm+1 ∈ Q, a ∈ Σ ∪ {ε}, A,B1, . . . ,Bm ∈ Γ such that
〈q1,B1 . . .Bm〉 ∈ δ(q, a,A)
[q,A, q1]→ a if 〈q1, ε〉 ∈ δ(q, a,A)

It holds: [q1,A, q2]
∗⇒ w i� (q1,w,A) `∗ (q2, ε, ε)

14 / 15

Hopcro�, J. E. and Ullman, J. D. (1979). Introduction to Automata
�eory, Languages and Computation. Addison Wesley.

Hopcro�, J. E. and Ullman, J. D. (1994). Einführung in die
Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Addison Wesley, 3. edition.

15 / 15

	Intuition
	Definition
	PDA and CFG

