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Data-Driven Parsing

Linguistic grammars can not only be created manually. An-
other way to obtain grammars is to interpret the syntactic
structures in a treebank as the derivations of a latent grammar
and to use an appopriate algorithm for grammar extraction.

One can also estimate occurrence probabilities for the rules
of a grammar. �ese can be used to determine the best parse,
resp. parses of a sentence.

Furthermore, rule probabilities can serve to speed up parsing.

Parsing with a probabilistic grammar obtained from a treebank
is called data-driven parsing.
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PCFG (1)

In most cases, probabilistic CFGs are used for data-driven parsing.

PCFG
A Probabilistic Context-Free Grammar (PCFG) is a tuple GP =
(N , T , P, S, p) where (N , T , P, S) is a CFG and p : P → [0, 1]a is a
function such that for all A ∈ N ,∑

A→α∈P
p(A→ α) = 1

a[0, 1] denotes {i ∈ R | 0 ≤ i ≤ 1}.

p(A→ α) is the conditional probability p(A→ α | A)
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PCFG (2)

PCFG
Start symbol VP

0.8 VP→ V NP
0.2 VP→ VP PP
1 NP→ Det N

1 PP→ P NP
0.1 N→ N PP
1 V→ sees

1 Det→ the
1 P→ with
0.6 N→ man
0.3 N→ telescope

Probability of a parse tree: product of the probabilities of the
rules used to generate the parse tree.
Probability of a category A spanning a string w: sum of the
probabilities of all parse trees with root label A and yield w.
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PCFG (3)

Parse tree probability
0.8 VP→ V NP
0.2 VP→ VP PP

1 NP→ Det N
1 PP→ P NP

0.1 N→ N PP
1 V→ sees

1 Det→ the
1 P→ with

0.6 N→ man
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t2 VP

NP
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Det
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V

sees

P(t1) = 0.6 · 0.8 · 0.2 · 0.3 = 0.0288
P(t2) = 0.6 · 0.8 · 0.1 · 0.3 = 0.0144

p(VP,sees the man with the telescope) = 0.0288+ 0.0144
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PCFG (4)

Probabilities of le�most derivations:

Probability of a le�most derivation
Let G = (N , T , P, S, p) be a PCFG, and let α, γ ∈ (N ∪ T)∗.

Let A → β ∈ P . �e probability of a le�most derivation
α

A→β⇒l γ is
p(α

A→β⇒l γ) = p(A→ β)

Let A1 → β1, . . . ,Am → βm ∈ P , m ∈ N. �e probability of a
le�most derivation α A1→β1⇒l · · ·

Am→βm⇒l γ is

p(α
A1→β1⇒l · · ·

Am→βm⇒l γ) =

m∏
i=1

p(Ai → βi)
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PCFG (5)

�e probability of le�most deriving γ from α, α ∗⇒l γ is de-
�ned as the sum over the probabilities of all le�most deriva-
tions of γ from α:

p(α ∗⇒l γ) =

k∑
i=1

m∏
j=1

p(Ai
j → βij )

where k ∈ N is the number of le�most derivations of γ from
α and m ∈ N is the derivation length of the ith derivation and
Ai
j → βij is the jth derivation step of the ith le�most derivation.

In the following, the subscript l is omi�ed assuming that derivations
are identi�ed with the corresponding le�most derivation for
probabilities.
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PCFG (6)

Consistent PCFG
A PCFG is consistent if the sum of the probabilities of all sentences
in the language equals 1.

Example of an inconsistent PCFG

.4 S → A .6 S → B 1 A→ a 1 B→ B
Problem: probability mass disappears into in�nite derivations.∑

w∈L(G) p(w) = p(a) = 0.4

PCFGs estimated from treebanks are usually consistent.
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Inside and outside probability (1)

Given a PCFG and an input w = w1 . . .wn, determine the likelihood
of w, i.e., compute

∑
t′∈T(w) P(t

′).

We don’t want to compute the probability of every parse tree
separately and then sum over the results. �is is too expensive.

Instead, we adopt a computation with tabulation, in order to share the
results for common subtrees.
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Inside and outside probability (2)

Idea: We �ll a |N | × |w| × |w| matrix α where the �rst dimension is
the id of a non-terminal, and the second and third are the start and
end indices of a span. αA,i,j gives the probability of deriving wi . . .wj
from A or, put di�erently, of a parse tree with root label A and yield
wi . . .wj :

αA,i,j = P(A ∗⇒ wi . . .wj|A)

Inside computation
1 for all 1 ≤ i ≤ |w| and A ∈ N :

if A→ wi ∈ P , then αA,i,i = p(A→ wi), else αA,i,i = 0
2 for all 1 ≤ i < j ≤ |w| and A ∈ N :
αA,i,j =

∑
A→BC∈P

∑j−1
k=i p(A→ BC)αB,i,kαC,k+1,j

We have in particular αS,1,|w| = P(w).
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Inside and outside probability (3)

Inside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a4

j
4

(3.87 · 10−2,S),
(0.069,X)

(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X)

(1,A), (0.1,S)

3

(6.9 · 10−2,S),
(0.03,X)

(3·10−2,S), (0.1,X)

(1,A), (0.1,S)

2

(3·10−2,S), (0.1,X)

(1,A), (0.1,S)
1

(1,A), (0.1,S)
1 2 3 4 i

P(aaaa) = αS,1,4 = 0.0387
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Inside and outside probability (4)

We can also compute the outside probability of a given non-terminal
A with a span from i to j.

Inside: Sum over all possibilities for the tree below A (spanning from i
to j).

Outside: Sum over all possibilities for the part of the parse tree
outside the tree below A, i.e., over all possibilities to complete a A, i, j
tree into a parse tree for the entire sentence.

A

i j

A
Outside probability βA,i,j

Inside probability αA,i,j
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Inside and outside probability (5)

We �ll a |N | × |w| × |w| matrix β such that βA,i,j gives the probability
of deriving w1 . . .wi−1Awj+1 . . .w|w| from S or, put di�erently, of
deriving a tree with root label S and yield w1 . . .wi−1Awj+1 . . .w|w|:

βA,i,j = P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w|w||S)

We need the inside probabilities in order to compute the outside
probabilities.

Outside computation
1 βS,1,|w| = 1 and βA,1,|w| = 0 for all A 6= S
2 for all 1 ≤ i < j ≤ |w| and A ∈ N :
βA,i,j =

∑
B→AC∈P

∑n
k=j+1 p(B→ AC)βB,i,kαC,j+1,k

+
∑

B→CA∈P
∑i−1

k=1 p(B→ CA)βB,k,jαC,k,i−1
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Inside and outside probability (6)

Outside computation

0.3: S→ AS 0.6: S→ AX 0.1: S→ a 1: X→ SA 1: A→ a
input w = a3

j
3

(1,S), (0,A), (0,X)

(0.3,S), (0,A),
(0.6,X)

(9 ·10−2,S), (0.18,X),
(3 · 10−2,A)

2

(0,S), (0,X), (0.03,A) (0.6,S), (0,X), (8.99 ·
10−3,A)

1

(0,S), (0,X),
(6.9 · 10−2,A)

1 2 3 i
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Inside and outside probability (7)

�e following holds:

1 �e probability of a parse tree for w with a node labeled A that
spans wi . . .wj is

P(S ∗⇒ w1 . . .wi−1Awj+1 . . .wn
∗⇒ w1 . . .wn) = αA,i,jβA,i,j

A

i j

A

2 In particular: P(w) = αS,1,|w|
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Parsing (1)

In PCFG parsing, we want to compute the most probable parse
tree (= most probable (le�most) derivation) given an input
sentence w, also called the Viterbi parse.

�is means that we are disambiguating: Among several read-
ings, we search for the best.

Sometimes, the k best are searched for (k > 1).

During parsing, we must make sure that updates on proba-
bilities (because a be�er derivation has been found for a non-
terminal) do not require updates on other parts of the chart.⇒
the order should be such that an item is used within a deriva-
tion only when its �nal probability is reached.
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Parsing (2)

We can extend the symbolic CYK parser to a probabilistic one. Instead
of summing over all derivations (as in the computation of the inside
probability), we keep the best one (⇒ Viterbi algorithm).

Assume a three-dimensional chart C (non-terminal, start index,
length).

CA,i,l := 0 for all A, i, l
CA,i,1 := p if p : A→ wi ∈ P scan
for all l ∈ [1..n]:

for all i ∈ [1..n− l + 1]:
for every p : A→ B C:

for every l1 ∈ [1..l − 1]:
CA,i,l = max{CA,i,l, p · CB,i,l1 · CC,i+l1,l−l1} complete
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Parsing (3)

We extend this to a parser.

�e parser can also deal with unary productions A→ B.
Every chart �eld has three components, the probability, the
rule that has been used and, if the rule is binary, the length l1 of
the �rst righthand side element.

We assume that the grammar does not contain any loops A +⇒
A.
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Parsing (4)

CA,i,1 = 〈p,A→ wi,−〉 if p : A→ wi ∈ P scan
for all l ∈ [1..n] and for all i ∈ [1..n− l]:

for all p : A→ B C and for all l1 ∈ [1..l − 1]:
for all l1 ∈ [1..l − 1]:

if CB,i,l1 6= ∅ and CC,i+l1,l−l1 6= ∅ then:
pnew = p · CB,i,l1 [1] · CC,i+l1,l−l1 [1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ BC, l1〉 binary complete
repeat until C does not change any more:

for every p : A→ B:
if CB,i,l 6= ∅ then:

pnew = p · CB,i,l[1]
if CA,i,l == ∅ or CA,i,l[1] < pnew then:

CA,i,l = 〈pnew,A→ B,−〉 unary complete
return build tree(S,1,n)
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Parsing (5)

Example
.1 VP→ VP NP
.6 VP→ V NP
.3 VP→ V

1 NP→ Det N
.3 V→ sees
.4 V→ comes

.3 V→ eats
1 Det→ this
.5 N→ morning

.5 N→ apple
Start symbol VP, input w = eats this morning
l
3

.0045, VP→ VP NP, 1.09, VP→ V NP, 1

2

.5, NP→ Det N, 1
.09, VP→ V

1

.3, V→ eats 1, Det→ this .5, N→ morning

1 2 3 i

(�e analysis of the VP gets revised since a be�er parse tree has
been found.)
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