Parsing

Deterministic Top-Down Parsing: LL(k) Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

HEINRICH HEINE

Table of contents

- Introduction
- 2 LL(1) grammars
- 3 Computing First and Follow
- 4 LL(1) parsing

Introduction (1)

Top-Down Parsing: Scan and Predict with

Predict:
$$\frac{[A\alpha, i]}{[\gamma\alpha, i]} \ A \to \gamma \in P$$

Problem: in general highly non-deterministic. Better if grammar in GNF but still non-deterministic.

Goal: find grammars that allow for deterministic top-down parsing.

Introduction (2)

Idea: Use the next terminal symbol(s) as lookahead to determine which production to predict.

Example: 1 lookahead

Productions $A \to X\beta$ and $A \to Y\gamma$ such that $X \stackrel{*}{\Rightarrow} b\beta'$ and $Y \stackrel{*}{\Rightarrow} c\gamma'$.

Then:

	-	stack	remaining input	
$A\Gamma$	<i>b</i>	$A\Gamma$	<i>c</i>	
$X\beta\Gamma$	$b \dots$	$Y\gamma\Gamma$	c	

Deterministic, if neither $X \stackrel{*}{\Rightarrow} c \dots$ nor $Y \stackrel{*}{\Rightarrow} b \dots$

LL(1) grammars (1)

Intuition: A CFG is LL(1) if it allows for a deterministic top-down parsing with 1 lookahead. In order to define LL(1), we define First and Follow.

First and Follow

Let $\alpha \in (N \cup T)^*$.

$$First(\alpha) = \{ a \mid \alpha \stackrel{*}{\Rightarrow} a\beta, a \in T, \beta \in (N \cup T)^* \} \cup \{ \epsilon \mid \alpha \stackrel{*}{\Rightarrow} \epsilon \}$$

Let $A \in N$.

$$Follow(A) = \{ a \mid S \stackrel{*}{\Rightarrow} \alpha A a \beta, a \in T, \alpha, \beta \in (N \cup T)^* \}$$
$$\cup \{ \$ \mid S \stackrel{*}{\Rightarrow} \alpha A, \alpha \in (N \cup T)^* \}$$

where \$ is a new symbol marking the end of the input.

LL(1) grammars (2)

Examples

- $G_1: S \rightarrow ab \mid aSb$ $First(ab) = First(aSb) = \{a\}$ $Follow(S) = \{b, \$\}$
- ② $G_2: S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB$ $First(aB) = \{a\}, First(bA) = \{b\}$ $First(a) = First(aS) = \{a\}, First(bAA) = \{b\}$ $Follow(S) = \{a, b, \$\}$
- $G_3: S \to aT, T \to b \mid Sb$ $First(S) = First(aT) = \{a\}, First(b) = \{b\}, First(Sb) = \{a\}$

LL(1) grammars (3)

LL(1)-grammar

A CFG *G* is a **LL(1)-grammar** if for all $A \in N$:

Let $A \to \alpha_1 | \dots | \alpha_n$ be all *A*-productions in *G*. then

- $First(\alpha_1), ..., First(\alpha_n)$ are pairwise disjoint, and
- if $\epsilon \in First(\alpha_j)$ for some $j \in [1..n]$, then $Follow(A) \cap First(\alpha_i) = \emptyset$ for all $1 \le i \le n, j \ne i$.

 G_1 and G_2 are not LL(1), G_3 is LL(1).

There are CFLs that cannot be generated by a LL(1)-grammar. Example: $\{a^ncb^n \mid n > 0\} \cup \{a^ndb^{2n} \mid n > 0\}$

LL(1) grammars (4)

Transformations that can help to obtain an equivalent LL(1) grammar:

- Elimination of left-recursion.
- Left-factoring: elimination of *A*-productions whose rhs have the same prefix:

Replace
$$A \to \alpha \beta_1, \ldots, A \to \alpha \beta_n$$
 ($\alpha \in (N \cup T)^+$) with $A \to \alpha A', A' \to \beta_1, \ldots, A' \to \beta_n$ where A' is a new non-terminal.

Example: Transformation from G_1 to G_3 .

Computing First and Follow (1)

First computation

- Computing *First* sets for single non-terminals:
 - For all $X \in N \cup T$: $First(X) = \emptyset$. If $X \in T$, then add X to First(X). If $X \to \epsilon \in P$, then add ϵ to First(X).
 - ② Do the following repeatedly until the *First*-sets do not change any more:

For each production $X \to X_1 \dots X_n$ with $n \ge 1$, add $a \in T$ to First(X) if there is an $i \in [1..n]$ such that

- (i) $a \in First(X_i)$, and
- (ii) $\epsilon \in First(X_j)$ for all $1 \leq j < i$.

If $\epsilon \in First(X_j)$ for all $1 \le j \le n$, then add ϵ to First(X).

- For all $\alpha \in (N \cup T)^+$: Add a new nonterminal X_{α} and a production $X_{\alpha} \to \alpha$ and then compute $First(\alpha) = First(X_{\alpha})$.
- \blacksquare First $(\epsilon) = \{\epsilon\}.$

Computing First and Follow (2)

First computation with deduction rules

Computing items [X,t] with $X \in N \cup T, t \in T \cup \{\varepsilon\}$ such that [X,t] iff $t \in \mathit{First}(X)$

Terminals:
$$\overline{[a,a]}$$
 $a \in T$

$$\varepsilon\text{-productions: } \ \overline{\ [A,\varepsilon]}\ \ A\to\varepsilon\in P$$

Bottom-up propagation:

$$\frac{[B,X],[X_1,\varepsilon],\ldots,[X_k,\varepsilon]}{[A,X]} \quad A \to X_1 \cdots X_k B\beta \in P, X \neq \varepsilon \text{ or } \beta = \varepsilon$$

Computing First and Follow (3)

Computing Follow

Let \$ be a new symbol (the end marker).

- For every $A \in N$: $Follow(A) = \emptyset$.
- Add \$ to Follow(S).
- Do the following until the *Follow*-sets do not change any more: For each $A \to \alpha B\beta \in P$ with $\alpha, \beta \in (N \cup T)^*, B \in N$:
 - add $First(\beta) \cap T$ to Follow(B).
 - if $\epsilon \in First(\beta)$, then add Follow(A) to Follow(B).

(We assume all $A \in N$ to be reachable.)

Computing First and Follow (4)

Computing Follow with deduction rules

Computing items [A, t] with $A \in N, t \in T \cup \{\$\}$ such that [A, t] iff $t \in Follow(A)$

Axiom: $\overline{[S,\$]}$

Right-to-left propagation:

$$(B, a) \qquad A \to \alpha BX_1 \dots X_k C\beta \in P, [X_1, \varepsilon], \dots, [X_k, \varepsilon], [C, a] \in \mathit{First}$$

Top-down propagation:

$$\frac{[A,X]}{[B,X]} \quad A \to \alpha B X_1 \dots X_k \in P, [X_1,\varepsilon], \dots, [X_k,\varepsilon] \in \mathit{First}$$

LL(1) parsing (1)

If a CFG is a LL(1) grammar, then it allows for a deterministic top-down parsing where the next input symbol as lookahead determines the predict step to take.

We construct a parsing table that tells us, depending on

- the topmost stack symbol and
- the next input symbol,

which production we have to predict.

LL(1) parsing (2)

Example

$$G_3: S \rightarrow aT, T \rightarrow b \mid Sb$$

$$First(aT) = a, First(b) = b, First(Sb) = a$$

parse table:

	S	T	
a	$S \rightarrow aT$	$T \rightarrow Sb$	
\overline{b}	_	$T \rightarrow b$	

` ′			
Stack	remaining input		
S	a abb		
aТ	aabb		
T	a bb		
S b	a bb		
aTb	abb		
Tb	b b		
bb	bb		
b	b		
_	_		

LL(1) parsing (3)

Construction of the parsing table *M*

For each production $A \to \alpha$:

- For every $a \in T$ with $a \in First(\alpha)$: $M(A, a) = A \rightarrow \alpha$.
- If $\epsilon \in First(\alpha)$, then for each $b \in Follow(A)$: $M(A, b) = A \rightarrow \alpha$.

Example: LL(1) parsing table construction

$$S \rightarrow ABC, A \rightarrow aA \mid \varepsilon, B \rightarrow cB \mid bB \mid \varepsilon, C \rightarrow d$$

Parsing table:

	S	A	В	C
a	$S \rightarrow ABC$	$A \rightarrow aA$	-	_
b	$S \rightarrow ABC$	$A \rightarrow \varepsilon$	B o bB	_
c	$S \rightarrow ABC$	$A \rightarrow \varepsilon$	$B \rightarrow cB$	_
d	$S \rightarrow ABC$	$A \to \varepsilon$	$B o \varepsilon$	$C \rightarrow d$

LL(k) parsing

If more than one symbol as lookahead is used, namely up to k symbols, the technique is called LL(k) parsing.

The definitions of *First* and *Follow* must be extended to contain terminal strings of up to *k* symbols.

The parse table gets much larger of course.

A CFG is LL(k) if it allows for deterministic top-down parsing with k lookahead symbols.

Conclusion

- LL(1) grammars allow for a deterministic top-down parsing.
- The next terminal in the remaining input (the lookahead) determines the predict step to take.
- First and Follow and the parse table can be precompiled.
- The set of languages generated by LL(1) grammars is a proper subset of CFL.