Parsing
Deterministic Top-Down Parsing: LL(k) Parsing

Laura Kallmeyer

Heinrich-Heine-Universitit Diisseldorf

Winter 2017/18

A=
HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Table of contents

@ Introduction

© LL(1) grammars

© Computing First and Follow

@ LL(1) parsing

Introduction (1)

Top-Down Parsing: Scan and Predict with

Ay, i
Ao ep
[ya,]

Problem: in general highly non-deterministic.

Better if grammar in GNF but still non-deterministic.

Predict:

Goal: find grammars that allow for deterministic top-down parsing.

Introduction (2)

Idea: Use the next terminal symbol(s) as lookahead to determine
which production to predict.

Example: 1 lookahead
Productions A — X3 and A — Y~ such that X = b3’ and Y = ¢v/.

Then:
stack ‘ input stack ‘ remaining input
Al | b... Al | c...
XpI' | b... YA | c...

Deterministic, if neither X =X c¢...norY=bh...

LL(1) grammars (1)

Intuition: A CFG is LL(1) if it allows for a deterministic top-down
parsing with 1 lookahead. In order to define LL(1), we define First and
Follow.

First and Follow
Leta € (NUT)*.

First(a) = {a|la = aB,a € T, € (NUT)*} U {e|a = ¢}
Let A€ N.
Follow(A) = {a|S = aAaB,a € T,a, € (NUT)*}

U{$|S:*>ozA,oz€ (NUT)*}

where $ is a new symbol marking the end of the input.

LL(1) grammars (2)

Q Gi: S— ab|aSh
First(ab) = First(aSb) = {a}
Follow(S) = {b, $}
@ Gy:S— aB|bA, A — a|aS|bAA, B — b|bS|aBB
First(aB) = {a}, First(bA) = {b}
First(a) = First(aS) = {a}, First(bAA) = {b}
Follow(S) = {a, b,$}
Q@ G:S—aT, T — b|Sb
First(S) = First(aT) = {a}, First(b) = {b}, First(Sb) = {a}

LL(1) grammars (3)

LL(1)-grammar

A CFG G is a LL(1)-grammar if for all A € N:
Let A — ay]...|ay, be all A-productions in G. then

m First(ay), ..., First(a,) are pairwise disjoint, and

m if € € First(a;) for some j € [1..n], then Follow(A)NFirst(co;) = ()
forall1 <i<n,j# i

G; and G; are not LL(1), G; is LL(1).

There are CFLs that cannot be generated by a LL(1)-grammar.
Example: {a"cb" |n > 0} U {a"db*" |n > 0}

LL(1) grammars (4)

Transformations that can help to obtain an equivalent LL(1) grammar:

m Elimination of left-recursion.

m Left-factoring: elimination of A-productions whose rhs have
the same prefix:
Replace A — af31,..., A — af, (o € (NUT)T) with
A — aA A — Bi,...,A" = [, where A’ is a new non-
terminal.

Example: Transformation from G; to Gs.

Computing First and Follow (1)

First computation

m Computing First sets for single non-terminals:

@ Forall X € NUT: First(X) = 0.
If X € T, then add X to First(X).
If X — ¢ € P, then add e to First(X).
© Do the following repeatedly until the First-sets do not change
any more:
For each production X — Xj...X, withn > 1,adda € T to
First(X) if there is an i € [1..n] such that
(i) a € First(X;), and
(il) € € First(X;) forall 1 < j < i.
If € € First(X;) for all 1 < j < n, then add € to First(X).

m Forall « € (NU T)": Add a new nonterminal X,, and a produc-
tion X, — « and then compute First(a)) = First(Xy,).

m First(e) = {e}.

Computing First and Follow (2)

First computation with deduction rules

Computing items [X, t] with X € NU T, t € T U {e} such that [X, ¢]
iff t € First(X)

Terminals:
[a, a]

- ions: —— A P
e-productions] — €€
Bottom-up propagation:

[B, X], [X1,¢], ..., [Xk €]

(A% A= Xi- - XBBEP,X+caf=c¢

10/17

Computing First and Follow (3)

Computing Follow

Let $ be a new symbol (the end marker).
m For every A € N: Follow(A) = 0.
m Add $ to Follow(S).

m Do the following until the Follow-sets do not change any more:
For each A — aBf € Pwitha,f € (NUT)*,BE N:

m add First(8) N T to Follow(B).
m if € € First(S3), then add Follow(A) to Follow(B).

(We assume all A € N to be reachable.)

Computing First and Follow (4)

Computing Follow with deduction rules

Computing items [A, t] with A € N, ¢t € T U {$} such that [A, ¢] iff
t € Follow(A)

Axiom: ———

S, 8]
Right-to-left propagation:

A — aBXi...XkCB € P,[X1,¢], ..., [Xk, €], [C, a] € First

[B, d]

Top-down propagation:
[A, X]
B, X]

A— aBXj... X, €P, [X],E],...,[Xk,é:] € First

LL(1) parsing (1)

If a CFG is a LL(1) grammar, then it allows for a deterministic
top-down parsing where the next input symbol as lookahead
determines the predict step to take.

We construct a parsing table that tells us, depending on

m the topmost stack symbol and

m the next input symbol,

which production we have to predict.

LL(1) parsing (2)

Gs: S— aT, T — b|Sb

First(aT) = a, First(b) = b, First(Sb) = a

Stack

remaining input

S

aT

T

‘ Sb
aTb
Tb
bb
b

parse table:

| s | T
T — Sb
T—b

al| S—aT

aabb
aabb
abb
abb
abb
bb
bb
b

LL(1) parsing (3)

Construction of the parsing table M

For each production A — a:

m For every a € T with a € First(a): M(A,a) = A — .
m If € € First(«), then for each b € Follow(A): M(A,b) = A — a.

Example: LL(1) parsing table construction

S — ABC, A — aAl|e,B— c¢B|bB|e,C — d
Parsing table:

I s | 4 | B | ¢ |
allS—ABC | A— adA - -
b||S—ABC| A—¢ | B— bB -
c||S—ABC| A—¢ | B— cB -
d||S—ABC | A—¢ B—e | C—d

LL(k) parsing

If more than one symbol as lookahead is used, namely up to k
symbols, the technique is called LL(k) parsing.

The definitions of First and Follow must be extended to contain
terminal strings of up to k symbols.
The parse table gets much larger of course.

A CFG is LL(k) if it allows for deterministic top-down parsing with k
lookahead symbols.

Conclusion

m LL(1) grammars allow for a deterministic top-down parsing.

m The next terminal in the remaining input (the lookahead) deter-
mines the predict step to take.

m First and Follow and the parse table can be precompiled.

m The set of languages generated by LL(1) grammars is a proper
subset of CFL.

	Introduction
	LL(1) grammars
	Computing First and Follow
	LL(1) parsing

