Parsing Left-Corner Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

HEINRICH HEINE

Table of contents

- Motivation
- 2 Algorithm
- 3 Look-ahead
- 4 Chart Parsing

Motivation

Problems with pure TD/BU approaches:

- Top-Down does not check whether the actual input corresponds to the predictions made.
- Bottom-Up does not check whether the recognized constituents correspond to anything one might predict starting from S.

Mixed approaches help to overcome these problems:

- Left-Corner Parsing parses parts of the tree top down, parts bottom-up.
- Earley-Parsing is a chart-based combination of top-down predictions and bottom-up completions.

Idea

In a production $A \to X_1 \dots X_k$, the first righthand side element X_1 is called the **left corner** of this production.

Notation: $\langle A, X_1 \rangle \in LC$.

Idea:

- Parse the left corner bottom-up while parsing X_2, \ldots, X_k top-down.
- In other words, in order to predict the subtree

a parse tree for X_1 must already be there.

Algorithm (1)

We assume a CFG without ε -productions and without loops. We need the following three stacks:

- a stack Γ_{compl} containing completed elements that can be used as potential left corners for applying new productions. Initial value: w
- a stack Γ_{td} containing the top-down predicted elements of a rhs (i.e., the rhs without the left corner) Initial value: S
- a stack Γ_{lhs} containing the lhs categories that are waiting to be completed. Once all the top-down predicted rhs symbols are completed, the category is moved to Γ_{compl} .

 Initial value: ε

Algorithm (2)

Item form $[\Gamma_{compl}, \Gamma_{td}, \Gamma_{lhs}]$ with

- $\Gamma_{compl} \in (N \cup T)^*,$
- $\Gamma_{td} \in (N \cup T \cup \{\$\})^*$ where \$ is a new symbol marking the end of a rhs,
- $\Gamma_{lhs} \in N^*$.

Whenever the symbols X_2, \ldots, X_k from a rhs are pushed onto Γ_{td} , they are preceded by \$ to mark the end of a rhs (i.e., the point where a category can be completed).

Axiom:
$$\overline{[w, S, \varepsilon]}$$

Algorithm (3)

Reduce can be applied if the top of Γ_{compl} is the left corner X_1 of some rule $A \to X_1 X_2 \dots X_k$. Then X_1 is popped, $X_2 \dots X_k$ \$ is pushed onto Γ_{td} and A is pushed onto Γ_{lhs} :

Reduce:
$$\frac{[X_1\alpha, B\beta, \gamma]}{[\alpha, X_2 \dots X_k \$B\beta, A\gamma]} \ A \to X_1 X_2 \dots X_k \in P, B \neq \$$$

Once the entire righthand side has been completed (top of Γ_{td} is \$), the completed category is moved from Γ_{lhs} to Γ_{compl} :

Move:
$$\frac{[\alpha, \$\beta, A\gamma]}{[A\alpha, \beta, \gamma]} A \in N$$

Algorithm (4)

A completed category can be a left corner (then reduce is applied) or it can be the next symbol on the Γ_{td} stack, then both can be popped:

Remove:
$$\frac{[X\alpha, X\beta, \gamma]}{[\alpha, \beta, \gamma]}$$

The recognizer is successfull if $\Gamma_{compl} = \Gamma_{td} = \Gamma_{lhs} = \varepsilon$:

Goal item: $[\varepsilon,\varepsilon,\varepsilon]$

Algorithm (5)

Example: Left Corner Parsing					
Productions:	Γ_{compl}	Γ_{td}	Γ_{lhs}	operation	
$S \rightarrow aSa \mid bSb \mid c$	abcba	S	ε		
input $w = abcba$.	bcba	Sa\$S	S	reduce	
	cba	Sb\$Sa\$S	SS	reduce	
	ba	\$Sb\$Sa\$S	SSS	reduce	
	Sba	Sb\$Sa\$S	SS	move	
	ba	b\$Sa\$S	SS	remove	
	a	\$Sa\$S	SS	remove	
	Sa	Sa\$S	S	move	
	a	a\$ S	S	remove	
	ε	\$ <i>S</i>	S	remove	
	S	S	ε	move	
	$ \varepsilon $	ε	ε	remove	

Algorithm (6)

Problematic for left-corner parsing:

- ε -productions: there is no left corner that can trigger a reduce step with an ε -production. If we allow ε -productions to be predicted in reduce steps without a left corner, we would add them an infinite number of times.
- loops: as in the LL-parsing case, loops can cause an infinite sequence of reduce and move steps. This problem is already avoided with the item-based formulation since we would only try to create the same items again.

Both problems can be overcome using the chart-based version with dotted productions described later.

Look-ahead (1)

Idea:

- build the reflexive transitive closure LC* of the left corner relation LC,
- before applying *reduce*, check whether the top of Γ_{td} stands in the relation LC^* to the lhs of the new production we predict:

Reduce:
$$\frac{[X_1\alpha, B\beta, \gamma]}{[\alpha, X_2 \dots X_k \$B\beta, A\gamma]} A \to X_1 X_2 \dots X_k \in P, \langle B, A \rangle \in LC^*$$

Difference between LC^* and First: LC^* for a given non-terminal can be non-terminals and terminals, while the First sets contain only terminals.

$$LC^* = \{ \langle A, X \rangle \mid A \stackrel{*}{\Rightarrow} X\alpha \}$$

Look-ahead (2)

```
Example:
   VP \rightarrow V NP, VP \rightarrow VP PP, V \rightarrow sees,
   NP \rightarrow Det N, Det \rightarrow the, N \rightarrow N PP, N \rightarrow girl, N \rightarrow telescope,
   PP \rightarrow P NP, P \rightarrow with
LC:
\langle VP, V \rangle, \langle VP, VP \rangle, \langle V, sees \rangle \langle NP, Det \rangle, \langle Det, the \rangle,
\langle N, N \rangle, \langle N, girl \rangle, \langle N, telescope \rangle, \langle PP, P \rangle, \langle P, with \rangle
LC^* = LC \cup:
\{\langle VP, sees \rangle, \langle V, V \rangle, \langle NP, NP \rangle, \langle NP, the \rangle,
\langle PP, PP \rangle, \langle PP, with \rangle, \langle P, P \rangle
```

Chart Parsing (1)

Problem of left corner parsing: non-deterministic.

In order to avoid computing partial results several times, we can use tabulation, i.e., adopt chart parsing.

Items we need to tabulate:

- Completely recognized categories: passive items [X, i, l]
- Partially recognized productions: active items $[A \to \alpha \bullet \beta, i, l]$ with $\alpha \in (N \cup T)^+, \beta \in (N \cup T)^*$

(*i* index of first terminal in yield, *l* length of the yield)

Chart Parsing (2)

Let us again assume a CFG without ε -productions.

We start with the initial items $[w_i, i, 1]$.

The operations reduce, remove and move are then as follows:

- Reduce: If $[X_1, i, l]$ and $A \to X_1 X_2 \dots X_k \in P$, then we add $[A \to X_1 \bullet X_2 \dots X_k, i, l]$.
- Move: If $[A \to X_1 X_2 \dots X_k \bullet, i, l]$, then we add [A, i, l]
- Remove: If [X, i, l] and $[A \rightarrow \alpha \bullet X\beta, j, i j]$ then we add $[A \rightarrow \alpha X \bullet \beta, j, i j + l]$.

Chart Parsing (3)

Parsing Schema:

Scan:
$$\frac{1}{[w_i, i, 1]}$$
 $1 \le i \le n$

$$\text{Reduce: } \frac{[X,i,l]}{[A \to X \bullet \alpha,i,l]} \ A \to X\alpha \in P$$

Remove:
$$\frac{[A \to \alpha \bullet X\beta, i, l_1], [X, j, l_2]}{[A \to \alpha X \bullet \beta, i, l_1 + l_2]} \quad j = i + l_1$$

Move:
$$\frac{[A \to \alpha X \bullet, i, l]}{[A, i, l]}$$

Goal item: [S, 1, n].

(This is actually the same algo as the CYK with dotted productions seen earlier in the course, except for different names of the rules and a different use of indices.)

Chart Parsing (4)

Example: Left Corner Chart Parsing

Productions: $S \rightarrow aSa \mid bSb \mid c$, input w = abcba.

item(s)	rule	antecedens items		
[a, 1, 1], [b, 2, 1], [c, 3, 1], [b, 4, 1], [a, 5, 1] (axioms)				
$[S \rightarrow a \bullet Sa, 1, 1]$	reduce	[a, 1, 1]		
[S ightarrow b ullet Sb, 2, 1]	reduce	[b, 2, 1]		
[S o cullet,3,1]	reduce	[c, 3, 1]		
[S ightarrow a ullet Sb, 4, 1]	reduce	[b,4,1]		
$[S \rightarrow b \bullet Sa, 5, 1]$	reduce	[a, 5, 1]		
[S, 3, 1]	move	[S o cullet,3,1]		
[S ightarrow bS ullet b, 2, 2]	remove	$[S \to b \bullet Sb, 2, 1], [S, 3, 1]$		
[S o bSbullet,2,3]	remove	$[S \rightarrow bS \bullet b, 2, 2], [b, 4, 1]$		
[S, 2, 3]	move	[S o bSbullet, 2, 3]		
$[S \rightarrow aS \bullet a, 1, 4]$	remove	$[S \to a \bullet Sa, 1, 1], [S, 2, 3]$		
[S o aSa ullet, 1, 5]	remove	$[S \rightarrow aS \bullet a, 1, 4], [a, 5, 1]$		
[S, 1, 5]	move	$[S \rightarrow aSa \bullet, 1, 5]$		

Conclusion

- The left corner of a production is the first element of its rhs.
- Predict a production only if its left corner has already been found.
- In general non-deterministic.
- Problematic for ε -productions and loops.
- Can be implemented as a chart parser with passive and active items.
- In the chart parser, ε -productions can be dealt with (they require an additional Scan- ε rule) and loops are no longer a problem.